www.haleyaldrich.com

REPORT ON MERCER ISLAND MIXED USE DESIGN 2885 78TH AVE SE MERCER ISLAND, WASHINGTON

by Haley & Aldrich, Inc. Seattle, Washington

for Xing Hua Group, Ltd. Bellevue, Washington

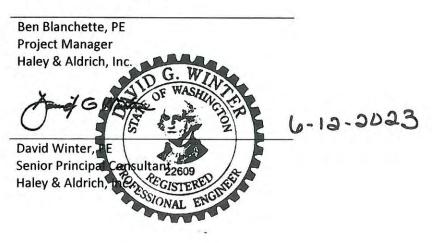
File No. 0202744-000 June 2023

HALEY & ALDRICH, INC. 3131 ELLIOTT AVENUE SUITE 600 SEATTLE, WA 98121 206.324.9530

SIGNATURE PAGE FOR

REPORT ON MERCER ISLAND MIXED USE DESIGN 2885 78TH AVE SE MERCER ISLAND, WASHINGTON

PREPARED FOR XING HUA GROUP, LTD. BELLEVUE, WASHINGTON


PREPARED BY:

Michael lin

Michael Liu, PE Project Geotechnical Engineer Haley & Aldrich, Inc.

REVIEWED AND APPROVED BY:

Manjur M. Blants

www.haleyaldrich.com

List	of Tab of Figu of App		iii iii iv
1.	Intro	oduction	1
2.	Proj	ect Understanding	2
3.	Purp	oose, Scope and Use of This Study	3
4.	Sub	surface Conditions	4
	4.1 4.2 4.3 4.4	SITE CONDITIONS FILED EXPLORATIONS SOIL CONDITIONS GROUNDWATER CONDITIONS	4 4 5
5.	Seis	mic Considerations	6
	5.1 5.2 5.3	SEISMIC SETTING CODE-BASED SEISMIC DESIGN PARAMETERS SEISMICALLY INDUCED GEOTECHNICAL HAZARDS	6 6 7
6.	Geo	technical Engineering Design Recommendations	9
	6.1 6.2 6.3 6.4 6.5 6.6	EXCAVATION AND SHORING LATERAL SOIL PRESSURES FOR DESIGN OF TEMPORARY SHORING WALLS 6.2.1 Surcharge Pressures on Shoring SOLDIER PILE DESIGN LAGGING DESIGN TIEBACK DESIGN PERMANENT SUBGRADE WALL DESIGN 6.6.1 Earth Pressures 6.6.2 Hydrostatic Groundwater Pressure 6.6.3 Seismic Earth Pressure on Walls 6.6.4 Surcharge Pressures on Walls FOUNDATION DESIGN RECOMMENDATIONS	9 9 10 10 11 11 12 12 13 13 13 13
	6.8	GROUNDWATER MANAGEMENT 6.8.1 Slug Results 6.8.2 Temporary Construction Dewatering 6.8.3 Permanent Drainage	13 14 14 15 15
7.	Geo	technical Recommendations for Construction	17

i

Table of Contents

8.

7.1	SOLDIER PILE INSTALLATION	17
7.2	LAGGING INSTALLATION	17
7.3	TIEBACK INSTALLATION	18
7.4	RECOMMENDATIONS FOR TIEBACK TESTING	18
	7.4.1 Verification Tests	18
	7.4.2 Proof Tests	19
7.5	SHORING MONITORING	20
	7.5.1 Preconstruction Survey	20
	7.5.2 Construction Survey	20
	7.5.3 Post-Construction Survey	21
7.6	FOUNDATION CONSTRUCTION	21
7.7	EARTHWORK	22
	7.7.1 Site Preparation and Grading	22
	7.7.2 Structural Fill	22
	7.7.3 Use of On-Site Soil as Structural Fill	22
	7.7.4 Temporary Cuts	23
Reco	ommendations for Continuing Geotechnica	al Services 24
Refe	erences	25

Page

List of Tables

Table No.	Title	Page
1	Seismic Design Parameters (ASCE/SEI 7-10)	7
2	Axial Capacity Parameters for Drilled Soldier Piles	11
3	Recommended Temporary Lagging Thickness	11
4	Tentative Pullout Resistance for Tiebacks with Pressure-Grouted Bond Zone	12
5	Soil Equivalent Fluid Unit Weights for Walls Backfilled with Structural Fill	13
6	Tieback Verification Test Incremental Load and Hold Time	19
7	Tieback Proof Test Schedule	19

List of Figures

Figure No.	Title
1	Vicinity Map
2	Site and Exploration Plan
3	Generalized Subsurface Cross Section A-A'
4	Generalized Subsurface Cross Section B-B'
5	Generalized Subsurface Cross Section C-C'
6	Generalized Subsurface Cross Section D-D'
7	Lateral Earth Pressure Temporary Shoring
8	Surcharge Pressures Determination of Lateral Pressure Acting on Adjacent Shoring
9	Lateral Pressures for Permanent Walls Constructed Against Shoring
10	Elevation of Top of Competent Soils

List of Appendices

Appendix	Title
А	Field Exploration Methods and Analysis
В	Historical Explorations
С	Slug Test Results

1. Introduction

This report presents our geotechnical engineering design study a mixed-use development project in Mercer Island, Washington (Figure 1). It includes our geotechnical engineering design recommendations and is organized as follows:

- Introduction;
- Project Understanding;
- Purpose, Scope, and Use of This Study;
- Subsurface Conditions;
- Seismic Considerations;
- Geotechnical Engineering Design Recommendations; and
- Recommendations for Continuing Geotechnical Services.

Tables are presented in the text and figures follow the text to illustrate the project area, exploration locations, and geotechnical design recommendations. Appendix A presents field exploration logs. Appendix B presents the laboratory test methods and results for the current study. Appendix C presents historical exploration logs in the project vicinity completed by Haley & Aldrich, Inc. (Haley & Aldrich) and others.

The recommendations presented herein are based on the building design as of the date of this report. If the project/building plans change, these recommendations should be confirmed and/or revised.

2. Project Understanding

The project consists of a four-story, mixed-use building with one level of below-grade parking. The proposed development site is shown on Figures 1 and 2.

We understand that the grading plan is for the underground parking level to have a basement finish floor at approximately an elevation of 77.5 feet. The existing ground surface generally slopes from an elevation of about 90 feet along 78th Avenue SE to about 82 feet along 77th Avenue SE. The bottom of the excavation is expected to be approximately 8 to 15 feet below existing ground surface.

In this report, the elevation datum is North American Vertical Datum 1988 and the horizontal datum is North American Datum 1983/1991.

3. Purpose, Scope, and Use of This Study

The purpose of our work was to assess subsurface information and provide geotechnical engineering recommendations for design of the proposed structure. Our scope of work included:

- Collecting and assessing subsurface conditions from historical explorations;
- Drilling four borings and installing two monitoring wells;
- Conducting six dynamic cone penetration test;
- Preparing logs of the explorations;
- Assessing groundwater conditions including slug testing of new and existing wells;
- Conducting engineering analysis; and
- Preparing this report summarizing our findings and presenting geotechnical recommendations.

We completed this work in general accordance with our contracts and change orders, and recent discussions with the design team on the revised design of the development. Two other reports have been prepared for this site, the most recent being 3 November 2020. This current report provides updated design recommendations based on the current project plans and can be considered to be a stand-alone document.

This report is for the exclusive use of Xing Hua Group, Ltd., and its design consultants for specific application to this project and site. We completed this work in accordance with generally accepted geotechnical engineering practices for the nature and conditions of the work completed in the same or similar locations, at the time the work was performed. We make no other warranty, express or implied.

4. Subsurface Conditions

4.1 SITE CONDITIONS

We visited the site in 2013 to observe the condition of the on-site buildings, nearby buildings, and paved surfaces. The buildings did not show signs of excessive building settlement such as large cracks in the walls or sloping lines. We did observe concrete cracking on the exterior stairway on the north side of the 2885 78th Avenue SE building that houses the Seven Star restaurant and a slight separation of concrete masonry unit (CMU) joints on the southwest corner of the 2864 77th Avenue SE building that houses Terra Bella; however, these observed conditions are not definitively caused by foundation settlement. We have not done a similar walk around the site since then.

According to property records accessed on the City of Mercer Island website, it appears that most of the buildings on or near the site are founded on spread foundations. However, the McDonald's restaurant immediately north of the site and the building immediately north of the McDonald's (2737 78th Avenue SE) were both supported using timber pile foundations up to 25 feet long.

4.2 FILED EXPLORATIONS

Exploration locations by Haley & Aldrich for the current project are shown on Figure 2 and exploration logs are provided in Appendix A. We also observed push probes conducted by Farallon Consulting for environmental sampling and made our own exploration logs for those explorations. We also reviewed geotechnical reports by Terra Associates, Inc. (Terra, 2012) and ABPB Consulting (ABPB, 2012). The locations of historical explorations and Farallon's push probes are also shown on Figure 2 and the logs are provided in Appendix B.

On 12 to 13 November 2014, we performed a subsurface investigation including four hollow-stem auger borings, HC-1 to HC-4, from 36.5 to 41.5 feet below ground surface (bgs) and one dynamic cone penetrometer, HC-5, to 20.5 feet bgs. We installed monitoring wells in borings HC-1 and HC-2. On 14 November 2014, we developed the monitoring wells and on 17 November 2014, we performed slug testing on monitoring wells in borings HC-1, HC-2, APBP M3, and Terra B-1. On 18 April 2022, we performed six Cone Penetration tests (CPT) CPT-01 to CPT-06 from 10 to 40 feet bgs.

Our understanding of the subsurface conditions is based on current and historical explorations at the site. Subsurface conditions interpreted from explorations at discrete locations on the site and soil properties inferred from the field and laboratory tests formed the basis of the geotechnical recommendations in this report. The nature and extent of variations between explorations may not become evident until additional explorations are performed or construction begins. If variations are encountered, it may be necessary to reevaluate the recommendations made in this report. General soil and groundwater conditions are addressed below. Refer to exploration logs for more detailed information at specific locations.

4.3 SOIL CONDITIONS

The subsurface soil conditions are illustrated by generalized subsurface profiles AA' through DD' on Figures 3 through 6. Based on our interpretation of the borings, the regional topography, and our conversations with the current property owners, the site is likely a filled in swamp/marsh lowland area

underlain by relatively impermeable glacial silt and clay. On the east side of the property the dense soils are less than 10 feet deep. On the west the dense soils are deeper. This affects foundation support recommendations primarily, and shoring elements secondarily.

As shown on the subsurface profiles, we have divided the lithology into four main soil units:

Unit 1. Loose to medium dense silty granular FILL, soft SILT, and PEAT. This unit is generally not suitable for conventional spread footings.

Unit 2. Medium stiff to hard SILT and silty CLAY. This unit is generally suitable for conventional spread footings with moderate bearing pressures but may require localized overexcavation and replacement with structural fill to provide adequate foundation subgrade.

Unit 3. Medium dense to dense SAND and silty SAND. This unit may be interbedded with Unit 2 and Unit 4 and is expected to be most prominent and most likely to be encountered along the southern end of the site. Excavations into this unit will likely require dewatering.

Unit 4. Hard SILT. This unit generally underlies the other soil units except along the southern end of the site. This unit is suitable for conventional spread footings with moderate to high bearing pressures.

In this report we define "competent soils" as Soil Units 2, 3, and 4.

4.4 **GROUNDWATER CONDITIONS**

Groundwater was observed during drilling at the site at depths of 7.5 to 35 feet. Groundwater occurs in the predominantly fine-grain soils (Units 1, 2, and 4) as perched water within discontinuous permeable lenses. Saturated groundwater conditions were observed in Unit 3. We have variously noted or measured groundwater between elevations 75 feet and 79 feet. Based on our measurements and observations, the water level varies seasonally. For design purposes, we recommend a groundwater table elevation of 79 feet for the design of below grade structures and for groundwater management planning. But depending on the time of year and the location around the site the water level might actually be at about elevation 75 feet.

Except on the far east side, this puts the groundwater in the upper poor soil.

5. Seismic Considerations

5.1 SEISMIC SETTING

The seismicity of Western Washington is dominated by the Cascadia Subduction Zone (CSZ), where the offshore Juan de Fuca plate subducts beneath the continental North American plate. Three main types of earthquakes are typically associated with subduction zone environments: crustal, intraplate, and interplate earthquakes. Seismic records in the Puget Sound area clearly indicate a distinct shallow zone of crustal seismicity, the Seattle Fault, which may have surficial expressions and can extend to depths of 25 to 30 kilometers (km). A deeper zone is associated with the subducting Juan de Fuca plate and produces intraplate earthquakes at depths of 40 to 70 km beneath the Puget Sound region (e.g., the 1949, 1965, and 2001 earthquakes) and interplate earthquakes at shallow depths near the Washington coast (e.g., the 1700 earthquake with an approximate magnitude of 9.0).

5.2 CODE-BASED SEISMIC DESIGN PARAMETERS

The basis for seismic design for the 2015 International Building Code (IBC) is the risk-targeted maximum considered earthquake (MCE_R) for ground motion response accelerations, and the maximum considered earthquake geometric mean (MCE_G) hazard for the peak ground acceleration (PGA).

The MCE_R ground motion response accelerations are defined for the most severe earthquake considered by IBC 2015, determined for the orientation that results in the largest maximum response to horizontal ground motions, and adjusted for the targeted risk. The geometric mean PGA corresponding to MCE_G is defined for the most severe earthquake, without adjustment for the targeted risk. The most severe earthquake considered by the code has a 2 percent probability of exceedance in 50 years, corresponding to a 2,475-year return period.

The mapped response spectra are based on Site Class B (rock) conditions. Seismic parameters are adjusted according to the actual site conditions. Based on the average soil stiffness in the upper 100 feet of soil, the recommended site class for this project location is Site Class D (stiff soil). IBC 2015 defines the design spectral acceleration parameters at short periods (S_{DS}) and at the one-second period (S_{1D}) as two-thirds of the corresponding site-class-adjusted MCE_R parameters (SMS and SM1). Similarly, American Society of Civil Engineers (ASCE) 7 requires MCE_G peak ground acceleration adjusted for site effects (PGA_M) to be used for evaluation of liquefaction, lateral spreading, seismic settlements, and other soil-related issues. The seismic design parameters were obtained from the U.S. Geologic Survey (USGS) U.S. Seismic Design Maps web application (<u>https://earthquake.usgs.gov/ws/designmaps/</u>) and the ASCE 7 Hazard Tool web application (<u>https://asce7hazardtool.online/</u>) accessed on 28 October 2020. The resulting seismic design parameters are shown in Table 1.

Table 1 – Seismic Design Parameters (ASCE/SEI 7-10)		
Parameter	Value	
Latitude	47.58473	
Longitude	-122.234008	
Site class	D	
Risk category	l, ll, or lll	
Peak ground acceleration, PGA	0.568 g	
Spectral response acceleration at short periods, S_s	1.38	
Spectral response acceleration at the 1-second period, S_1	0.531	
Seismic site coefficient, F _{PGA}	1	
Site modified peak ground acceleration, PGA _m	0.568 g	
Seismic site coefficient, F _a	1	
Seismic site coefficient, F_v	1.5	
Sds (Ss * Fa)	0.92	
Sd1 (S1 * Fv) 0.531		
Note: S_s and S_1 values presented in Table 1 are for the Site Class B/C boundary and should be adjusted to be applicable to Site Class D conditions at the project site using the site coefficients included in this table (i.e., F_a and F_v).		

5.3 SEISMICALLY INDUCED GEOTECHNICAL HAZARDS

Surface Rupture. The northernmost splay of the Seattle Fault exists approximately 0.5 miles south of the site. There is a remote potential for surface rupture at the site from a new splay of the Seattle Fault; however, this hazard is very low based on the Seattle Fault's 3,000-year recurrence interval, the large number of possible locations for surface rupture, and the chance that the fault would not produce surface rupture in this segment of the fault.

Lateral Spreading. Lateral spreading is typically associated with lateral movement on sloping ground caused by liquefaction or a reduction of shear strength of soils within or under the slope. Given the low liquefaction hazard at the site, we judge that the potential for lateral spreading is also low.

Landslides. We reviewed the City's Environmentally Critical Area (ECA) Ordinance and found that no critical area issues, such as previous landslide or steep slope, currently exist at the site. The risk of landslide during an earthquake is considered low for this site.

Liquefaction and Subsidence. Liquefaction is caused by a rapid increase in pore water pressure that reduces the effective stress between soil particles, resulting in sudden loss of shear strength in the soil. Granular soils that rely on inter-particle friction for shear strength are susceptible to liquefaction under the excess pore pressure buildup during strong ground shaking. Liquefaction can cause ground settlement, bearing capacity failure, and lateral spreading.

Liquefaction susceptibility on the site was evaluated from standard penetration test (SPT) results using the Idriss and Boulanger (2008) method. The evaluation identified liquefiable soils for four of the 95 SPT samples analyzed. Anticipated post seismic settlement may occur on the order of 1 to 2.5 inches in these discrete areas. The liquefiable samples are located 20 to 35 feet below the existing ground surface. The CPTs results on liquefaction are consistent with analyzed SPT samples. We anticipate that

the proposed foundation system will be able to tolerate this discrete settlement and not adversely affect the functionality of the building. As a precaution, if loose soils are observed beneath the footings during construction, they should be over excavated and replaced with well-compacted materials, such as Washington State Department of Transportation (WSDOT) Standard Specification (SS) Section 9-03.9(3) crushed surfacing base course or better.

6. Geotechnical Engineering Design Recommendations

This section of the report presents our geotechnical engineering analysis, conclusions, and design recommendations for the project. Our recommendations are based on our current understanding of the project and the subsurface conditions revealed by relatively recent and historical borings. As noted, if the nature or location of the proposed project facilities changes, Haley & Aldrich should be notified so that we can change or confirm our recommendations.

6.1 EXCAVATION AND SHORING

We recommend a conventional shoring system of soldier piles, tieback anchors, and wood lagging, even though the excavation will extend about to the groundwater level.

Our shoring recommendations assume that the excavation will extend down to only about elevation 75 feet. There are project elements that will require deeper excavation, such as elevator pits and possible foundations for the tower crane. In those cases we assume that open cuts can be used, or if the conditions do not allow open cuts, then temporary and reusable shoring (like steel plates).

Perched groundwater will likely be encountered in sand zones throughout the excavation depth. Excavations below elevation 79 feet will encounter increasing amounts of groundwater, but we expect the flows to still be manageable and not to require wide-spread dewatering. If the conditions encountered are not as expected we will need to relook at the groundwater management requirements, working with the project dewatering designer and consultant.

Shoring should be designed by a professional structural engineer registered in the State of Washington. We also recommend that we be given the opportunity to review the geotechnical aspects of the shoring design before construction. It is generally not the purpose of this report to provide specific criteria for the contractor's construction means and methods. It should be the responsibility of the shoring contractor to verify actual ground conditions and determine the construction methods and procedures needed to install an appropriate shoring system.

6.2 LATERAL SOIL PRESSURES FOR DESIGN OF TEMPORARY SHORING WALLS

Lateral earth pressures for the shoring design depend on the type of shoring and its ability to deform. If the top of the shoring is allowed to deform on the order of 0.001 to 0.002 times the shoring height, and if no settlement-sensitive structures or utilities are within the zone of deformation, the shoring may be designed using active earth pressures. If settlement-sensitive structures or utilities exist within the potential zone of deformation, or where the shoring system is too stiff to allow sufficient lateral movement to develop an active condition, at-rest earth pressures should be used to design the shoring.

We expect that temporary shoring will consist of soldier piles and timber lagging in either a cantilevered condition or with one level of tieback anchors. Tied-back or braced walls should be designed using a triangular earth pressure distribution, subject to additional discussions between the shoring designer, the structural engineer, and Haley & Aldrich. General earth pressure diagrams and recommendations for temporary shoring are provided on Figure 7.

The lateral earth pressures presented herein for soldier piles are based on non-sloping conditions behind the walls and drained conditions so that hydrostatic water pressure does not act on the walls above the base of the excavation. For design calculations, we recommend adding at least 2 feet to the proposed excavation depth to allow for possible surface pressures near the excavation (e.g., light vehicles, small material stockpiles).

Based on the assumed loading conditions and the applied loads, we expect the shoring system to deflect about 1 inch or less into the excavation. Individual soldier piles may deflect more than 1 inch or deflect away from the excavation.

Haley & Aldrich should review any soldier piles that deflect more than 1/2 inch to try to identify the cause of the deflection and to determine whether remedial measures are required.

6.2.1 Surcharge Pressures on Shoring

Additional lateral pressures due to surcharge loads (e.g., buildings, footings, heavy equipment, large material stockpiles) should be calculated using methods shown on Figure 8. These loads would be added to the loads calculated for the shoring walls. We recommend Haley & Aldrich review or complete the estimated surcharge loads when surcharge loads, footprints, and foundation plans of adjacent structures are available.

6.3 SOLDIER PILE DESIGN

We recommend the following for soldier pile design:

- Soldier piles must be designed by a licensed structural engineer;
- Soldier piles should be designed for bending using a uniform loading equivalent to 80 percent of the design values and analyzed for shear using total load;
- To design against kickout, the lateral resistance should be computed using the passive pressure on Figure 7, acting over 2 times the diameter of the concreted shaft section or the pile spacing, whichever is less;
- The embedded portion of the pile shaft should be at least 2 feet in diameter; and
- Piles should be embedded at least 8 feet below the bottom of the excavation and extend below Soil Unit 1.

These recommendations assume proper installation of the soldier piles as discussed later in this report.

We recommend the allowable axial pile capacity parameters in Table 2 to calculate the vertical resistance of the soldier piles. The values assume that soldier piles are embedded into competent soils. The pile side friction above the bottom of the excavation should be neglected. The soldier piles should be embedded at least 8 feet below the base of the excavation.

Table 2. Axial Capacity Parameters for Drilled Soldier Piles					
Soil Unit	Allowable Unit Side	Allowable Unit End			
	Capacity (ksf)	Capacity (ksf)			
Unit 1	0.5 ksf	NA			
Units 2 – 4	2 ksf	10 ksf			
Notes:					
ksf = kips per square foot					

6.4 LAGGING DESIGN

Temporary lagging should be designed in accordance with Federal Highway Administration (FHWA) Geotechnical Engineering Circular 4 (FHWA, 1999), structural engineering guidelines, soil type, and local experience. Table 3 provides recommended lagging thicknesses based on the FHWA recommendations.

Based on our site investigation, we recommend using a Soil Type of "Competent" for the eastern half of the site and "Difficult" for the western half of the site.

Table 3. Recommended Temporary Lagging Thickness							
			Clear Span of Lagging (feet)				
		5	6	7	8	9	10
		Minimur	n Actual Tl	nickness of	Rough-Cut	Timber Lagg	ing (inches)
Competent (Type 1) ^a	25 and under	2	3	3	3	4	4
	Over 25 to 60	3	3	3	4	4	5
Difficult (Type 2) ^a	25 and under	3	3	3	4	4	5
	Over 25 to 60	3	3	4	4	5	5
Potentially Dangerous	15 and under	3	3	4	5	See note ^b	See note ^b
(Type 3) ^a	Over 15 to 25	3	4	5	6	See note ^b	See note ^b
	Over 25	4	5	6	See note ^b	See Note ^b	See note ^b
b. For e	ype as defined exposed wall h	eights excee	ding the lim	its in Table 3,	, or where mi	5	55 5

thickness is not provided, the contractor should design the lagging in accordance with structural engineering guidelines and local experience. Soldier pile and lagging shoring may not be appropriate for these cases.

6.5 TIEBACK DESIGN

We recommend the tentative allowable tieback pullout value in Table 4 for a typical 6-inch-diameter drilled hole with a pressure-grouted bond zone. The allowable transfer load includes a recommended

factor of safety of 2.0. The factor of safety should be confirmed by completing at least two successful verification tests in each soil type. Additionally, each tieback should be proof-tested to 133 percent of the design load. We recommend that the shoring contractor and/or designer determine a final design tieback pullout resistance based on their previous experience in Mercer Island or Seattle, which must then be confirmed by field testing.

Table 4. Tentative Pullout Resistance for Tiebacks with			
Pressure-Grouted Bond Zone			
Soil Type Allowable Transfer Load (kip/ft)			
Competent soils – Soil Units 2 through 4 2			

We make the following additional recommendations for tieback design:

- Do not install the bond zone within Soil Unit 1 (fill, soft silt and clay, peat).
- Tieback bond zones should be outside of the no-load zone. The no-load zone is shown on Figure7 as a zone bounded by a 60-degree line to the horizontal that starts at a distance of H/4 from the bottom of the excavation, where H is the excavation height.
- Locate anchors at least three tieback diameters apart.
- Design anchor lengths so that they do not conflict with any underground support elements of adjacent structures.
- Identify existing facilities adjacent to the project site including buried utilities and foundations, as these may affect the location and length of the anchors.
- Allow the contractor to select the tieback anchor material and the installation technique. The shoring contractor should be contractually responsible for the design of the tieback anchors, as tieback capacity is largely a function of the means and methods of installation. The selected installation method must be confirmed using verification and proof-testing.
- Haley & Aldrich should review the design for anchor locations, capacities, and related criteria prior to implementation.

6.6 PERMANENT SUBGRADE WALL DESIGN

This section and Figures 8 and 9 provide guidance for determining the permanent subgrade wall loads.

6.6.1 Earth Pressures

Permanent subsurface walls constructed adjacent to soldier pile shoring may be designed using the same earth pressure values and distribution that was used for shoring design. The earth pressure does not include surcharge loads such as loads from adjacent buildings; these must be calculated separately and added to get the total permanent lateral pressure.

Permanent walls that are backfilled and are not adjacent to shoring walls should be designed using a triangular earth pressure distribution. For typical granular fill soil, active and at-rest pressures may be determined using the equivalent fluid unit weights in Table 5. Note that the equivalent fluid density does not include any surface loading conditions or loading due to groundwater hydrostatic pressure; also, the ground surface behind the wall is assumed to be horizontal. Walls without drainage must be designed for full hydrostatic pressure.

The use of active and passive pressure is appropriate if the wall is allowed to yield a minimum of 0.001 times the wall height. For a non-yielding wall, at-rest pressures should be used.

Table 5. Soil Equivalent Fluid Unit Weights for Walls Backfilled with Structural Fill						
Soil Type	Parameter	Value (pcf)				
Structural fill	Active earth pressure	35				
	At-rest earth pressure	55				
	Passive earth pressure ^a	300				
Notes:						
a. Include a factor of safety of 1.5						

6.6.2 Hydrostatic Groundwater Pressure

Subgrade walls and slabs will be waterproofed and designed for hydrostatic lateral and uplift pressures. There will be no wall or underslab drainage installed.

For walls and floors that are not drained, a triangular lateral hydrostatic pressure of $62.4h_w$ per square foot should be added, where h_w is the depth of structure below the design groundwater level. The depth of the basement is expected to be very close to the level of the groundwater table. For undrained walls and slabs we recommend a design water level of 79 feet.

6.6.3 Seismic Earth Pressure on Walls

Lateral earth pressures based on the design earthquake for active and at-rest conditions can be assumed as uniform pressures in pounds per square foot of 8H and 12H (where H is the height of the wall in feet), respectively. The seismic earth pressure should be applied from the top of the wall to the bottom of the excavation, as shown on Figure 9. This seismic earth pressure is calculated using the 2015 IBC design hazard level for the site.

6.6.4 Surcharge Pressures on Walls

The pressures shown on Figures 7 and 9 do not include surcharge loads due to buildings, footings, heavy equipment, large stockpiles, and so forth. These loads must be calculated separately, using the methods shown on Figure 8 or similar, and added to the pressures determined using Figures 7 and 9.

We recommend Haley & Aldrich review or complete the estimated surcharge loads when surcharge loads, footprints, and foundation plans of adjacent structures are available.

6.7 FOUNDATION DESIGN RECOMMENDATIONS

Figure 10 provides a contour map of the estimated elevation of the top of competent soils; however, it is important to note that the contours on Figure 10 are only an estimate based on interpolation between the exploration locations. With the lowest finished floor at elevation 77.5 feet, we estimate that spread footing and a mat slab could be founded at about elevation 74 feet to 75 feet. Based on the Figure 10 contours that means approximately the eastern 40 percent of the site will expose competent soils at elevation 75 feet, allowing direct support of spread foundations. For the western 60 percent of the site some improvement of the ground will be needed to support spread foundations. The maximum allowable foundation bearing pressure for either an isolated footing or a mat slab is 5 ksf. If a lower

allowable bearing pressure will work for the building that will reduce the post-construction settlement and/or allow a broader spacing on the ground improvement (if used).

Overexcavation. If the competent soils are within 3 to 5 feet of the bottom of the spread foundations it could be most economical to overexcavate the poor material and either found the excavations deeper or backfill the overexcavation with compacted structural fill or lean mix concrete. In this condition, however, excavation extending below elevation 75 feet will encounter increasing amounts of groundwater, thus complicating the entire operation. For that reason we recommend only nominal overexcavation and replacement, and generally in isolated or confined areas that can be drained.

Ground Improvement. Rammed aggregate piers, commonly known by the company trade name as Geopiers, or another method call rigid inclusions, are both common ways to improve poor soil so that spread foundations can be used. Geopiers are designed and installed by a specialty contractor based on criteria provided by the geotechnical engineer. Rigid inclusions are designed by the geotechnical engineer and are installed by contractors capable of installing soldier piles or augercast piles, etc. Both methods take the spread foundation load and transfer it to denser soils below the bearing elevation.

Augercast Piles. If spread foundations are not desired on the western portion of the building, then augercast piles can be used as a deep foundation alternative. In our opinion use of augercast piles will create a potential differential settlement concern and so will require additional modeling and design to predict and mitigate that settlement.

If used, we recommend Geopiers and rigid inclusions be designed for an allowable bearing pressure of 5 ksf with a post-construction settlement of no more than 1 to 1/2 inches. We also recommend the installations be a minimum of 20 feet long and extend at least 10 feet into the dense glacial soil. Depending on the design we may also ask for load testing and confirmation testing using CPTs. The tops of the installations are covered with a load transfer platform consisting of 12 to 24 inches of gravel or crushed rock.

Because of the likely ground conditions at the bearing elevation, it will probably be necessary to install the Geopiers or rigid inclusions from the ground surface or just below the ground surface. Geopiers are installed using a heavy tracked rig supported by a large front loader. A stable working surface for this equipment is needed.

These ground improvement elements should also be installed before the shoring walls.

6.8 GROUNDWATER MANAGEMENT

6.8.1 Slug Results

Water levels and slug testing results are presented in Appendix C and may be used for design of construction dewatering and estimating water flow into a permanent drainage system. Based on the slug test results we recommend average hydraulic conductivities for wells screened in Soil Unit 3, sand and silty sand, 9.0×10^{-5} to 8.3×10^{-4} centimeters per second (0.3 to 2.4 feet per day).

6.8.2 Temporary Construction Dewatering

We set the design groundwater level at elevation 75 feet to better estimate settlements associated with dewatering and the resulting water level drawdown. But since extensive dewatering will not be required, we believe elevation 79 feet is a better planning level for encountering and dealing with groundwater in the excavations. We expect lower levels to occur in the drier summer and early fall months. We think it is important to keep the dewatering designer engaged as part of the team through construction even if a major dewatering program is not expected. We will work with the designer and with the contractors to determine the best methods of controlling groundwater during excavation and construction of the foundations and below-grade elements.

Subject to the dewatering designer's concurrence we believe only nominal and isolated drainage and dewatering will be required for general excavation. A network of ditches and sumps, supplemented by well points where needed, should provide the necessary drainage to allow excavations to be completed and free movement of excavating and other construction equipment to occur.

Note however that the subgrade will be soft and will get softer if it rains. It will probably be necessary some or all of the time in the bottom of the hole to build a working surface of quarry spalls or crushed rock, perhaps with a geotextile. We can work with the contractor on appropriate materials to create a stable working surface.

The amount of water discharged from the site depends on many factors including design and operation of the dewatering system (if applicable), the excavation depth and extent, and the variability in soil and groundwater properties. Rainfall, surface water, and groundwater from adjacent utility trenches can significantly increase short-term water discharge rates. Also, the time of year and nearby construction dewatering activities can affect groundwater flows.

6.8.3 Permanent Drainage

Because the below-grade walls and slabs will be waterproofed there will be no subsurface drainage system required. All below-grade elements located below elevation 79 feet must be designed for the lateral and uplift hydrostatic pressures from the groundwater.

6.8.3.1 Backfilled Walls

Walls with soil backfilled on only one side will require drainage or they must be designed for full hydrostatic pressure. We recommend the following:

- Backfilling should be done with a minimum thickness of 18 inches of free-draining sand or sand and gravel that is well-graded (i.e., that has a wide range in particle size).
- Drains should be installed behind any backfilled subgrade walls. The drains, with cleanouts, should consist of perforated pipe a minimum of 4 inches in diameter placed on a bed of, and surrounded by, at least 6 inches of free-draining sand or sand and gravel. The drains should be sloped to carry the water to a sump or other suitable discharge.
- The backfill should be continuous and should envelop the drainage behind the wall.
- The drainage fill surrounding the pipe should be compatible with the size of the holes in the pipe.

6.8.3.2 Final Site Drainage

- The site and adjacent paved areas should be graded in such a way that surface water will not pond near the structures.
- Roof drains should be sloped and tightlined to a suitable outlet away from the proposed building.

6.8.3.3 Stormwater Detention

The required stormwater detention will be provided in 6-foot diameter pipes outside a portion of the northern wall. The pipe inverts will be at about elevation 78 feet or 79 feet and should be above the groundwater table. Excavation for the pipe installation will be about 10 feet or so below grade. We will work with the contractor as needed on the best installation plan.

7. Geotechnical Recommendations for Construction

7.1 SOLDIER PILE INSTALLATION

- Installation methods should minimize caving soils or loosening of soil at the bottom of the drilled shaft which can reduce the bearing capacity in the zone of disturbed soil. Groundwater increases the chances of soil disturbance.
- Tieback de-tensioning and shoring failure could occur if bearing capacity is inadequate and soldier piles settle under the vertical component of the inclined tieback load. We recommend that a Haley & Aldrich representative closely monitor soldier pile installation for these conditions so construction methods can be adjusted accordingly.
- The contractor should be prepared to case the soldier pile holes where loose soils or groundwater seepage could cause loss of ground. Fill soils can be especially prone to caving and may require casing. The actual need for casing should be determined in the field at the time of installation.
- If the shaft excavation contains water or slurry, the contractor should tremie concrete to the bottom of the hole. Lean mix, concrete, and controlled density fill should not be end-dumped through water or slurry.
- The contractor should be prepared to excavate the soldier piles in a manner that prevents heave or boiling at the bottom of the soldier pile excavation. It may be possible to over-drill the borehole and backfill the bottom of the borehole with structural concrete bearing on undisturbed soil.
- Drilling mud should not be used unless reviewed and approved by Haley & Aldrich and the shoring designer.
- Soldier pile shoring construction may be difficult if cobbles or loose sand and gravel are
 encountered in the excavation. If these conditions are encountered, substantial soil raveling
 could occur. If raveling soils are encountered, we recommend shaft construction methods such
 as slurry or temporary casing be used to minimize raveling and loss of soil.

7.2 LAGGING INSTALLATION

- Prompt and careful installation of lagging, particularly in areas of seepage and loose soil, is important to maintain the integrity of the excavation. The contractor should be prepared to place lagging in small vertical increments and should also be prepared to backfill voids caused by ground loss behind the shoring system. The proper installation should be the responsibility of the shoring contractor to prevent soil failure or sloughing and loss of ground, and to provide safe working conditions.
- Voids greater than 1 inch should be backfilled with sand, pea gravel, or a porous slurry. The void spaces progressively as the excavation deepens. The backfill must not allow potential hydrostatic pressure buildup behind the wall. Drainage behind the wall must be maintained or hydrostatic water pressure should be added to the recommended lateral earth pressures.
- If there is a slope above the wall, extra lagging should be installed above the shoring wall to provide a partial barrier for material that could ravel down from the slope face and fall into the excavation.

7.3 TIEBACK INSTALLATION

- Structural grout should be pumped into the anchor zone using a grout hose or tremie hose placed at the bottom of the anchor.
- The portion of the tieback in the no-load zone should be filled with a non-cohesive mixture of sand-pozzolan-water or equivalent; or a bond breaker such as plastic sheathing or a polyvinyl chloride pipe should be installed around the tie rods within the no-load zone.
- Tiebacks should be grouted and backfilled immediately after placing the anchor. To prevent collapse of the holes, ground loss, and surface subsidence, anchor holes should not be left open overnight.
- Care should be taken not to mine out large cavities in granular soil.
- Continuous cutting return should be maintained if pneumatic drilling techniques are used, so that air pressure is not channeled to nearby utility vaults, corridors, or subgrade slabs, which may be damaged by air pressure.
- Anchors should be installed to minimize ground loss and previously installed anchors should not be disturbed. During tieback drilling, wet or saturated zones may be encountered and caving or blow-in could occur. Drilling with a casing may reduce the potential for these conditions and ground loss.
- Tiebacks should be tested to confirm the appropriateness of the anchor design values and to verify that a suitable installation is achieved. The recommended procedures for verification and
- proof-testing are provided below.

7.4 RECOMMENDATIONS FOR TIEBACK TESTING

The tieback anchor testing program should include verification testing of select tiebacks and proof testing of all production tiebacks. We recommend that tieback testing be done in general accordance with the recommendations in the publication Recommendations for Prestressed Rock and Soil Anchors by the Post Tensioning Institute (PTI, 2004) and the recommendations below.

7.4.1 Verification Tests

We recommend a minimum of two verification tests per soil type before installation of production anchors to validate the design pullout value. Haley & Aldrich will select the testing locations with input from the shoring subcontractor. Haley & Aldrich or the shoring designer may require additional verification tests when creep susceptibility is suspected or when varying ground conditions are encountered.

Verification tiebacks should be installed by the same methods and personnel, using the same material and equipment, as the production tiebacks; Haley & Aldrich will determine whether deviations require additional verification testing. At least two successful verification tests should be performed for each installation method and each soil type.

Verification tests load the tieback to 200 percent of the deciliter (DL) and include a 60-minute hold time at 150 percent of the DL. The tieback DLs will be on the shoring drawings. The tieback load should not

Table 6– Tieback Verification Test Incremental Load and Hold Time			
Load Level	Hold Time		
Alignment Load (AL)	Until stable		
0.25DL	10 minutes		
0.5DL	10 minutes		
0.75DL	10 minutes		
1.0DL	10 minutes		
1.25DL	10 minutes		
1.5DL	60 minutes		
1.75DL	10 minutes		
2.0DL	10 minutes		

exceed 80 percent of the steel's ultimate tensile strength. Verification test tiebacks should be incrementally loaded and unloaded using the schedule in Table 6.

The alignment load should be the minimum load required to align the testing assembly and should be less than 5 percent of the DL. The dial gauge should be zeroed after the alignment load has stabilized. Perform a creep test at 1.5DL by holding the load constant to within 50 per square inch and recording deflections at 1, 2, 3, 5, 6, 10, 20, 30, 50, and 60 minutes.

The acceptance criteria for a verification test are:

- The creep rate at 1.5DL is less than 0.08 inches between 6 and 60 minutes and the creep rate is linear or decreasing during the creep test;
- The total tieback displacement is greater than 80 percent of the theoretical elastic elongation of the design unbonded length plus the jack length; and
- The anchor does not pull out under repeated loading.

7.4.2 Proof Tests

Proof tests load the tieback to 1.33DL and include a 10-minute hold time at 1.33DL. The tieback DLs should be on the shoring drawings. The tieback load should not exceed 80 percent of the steel's ultimate tensile strength. Proof tests should be incrementally loaded and unloaded using the schedule in Table 7.

Table 7 – Tieback Proof Test Schedule		
Load Level	Hold Time	
AL	Until stable	
0.25DL	1 minute	
0.5DL	1 minute	
0.75DL	1 minute	
1.0DL	1 minute	
1.33DL	10 minutes	

The alignment load should be the minimum load required to align the testing assembly and should be less than 5 percent of the design load. The dial gauge should be zeroed after the alignment load has stabilized.

The load should be held constant to within 50 psi and deflections recorded at 1, 2, 3, 5, 6 and 10 minutes. If the tieback deflection between 1 and 10 minutes at 1.33DL exceeds 0.04 inches, the load should be held for an additional 50 minutes and deflections recorded at 20, 30, 50, and 60 minutes.

The acceptance criteria for a proof test are:

- The creep rate at 1.33DL is less than 0.04 inches between 1 and 10 minutes or less than 0.08 inches between 6 and 60 minutes and the creep rate is linear or decreasing during the creep test;
- The total tieback displacement is greater than 80 percent of the theoretical elastic elongation of the design unbonded length plus the jack length; and
- The anchor does not pull out under repeated loading.

7.5 SHORING MONITORING

A shoring monitoring program provides early warning if the shoring does not perform as expected. The monitoring program should include a preconstruction survey, periodic surveys during construction, and a post-construction survey.

7.5.1 Preconstruction Survey

A preconstruction survey documents the condition of existing streets, utilities, and buildings. The survey should include video and/or photographic documentation. The size and location of existing cracks in streets and buildings should receive special attention and may be monitored with a crack gauge.

7.5.2 Construction Survey

We recommend adjacent building surveys and optical surveys be included in the shoring monitoring program during construction. If there are sensitive structures/utility vaults adjacent to the excavation, an inclinometer survey may also be a prudent addition to the monitoring program.

All monitoring data should be submitted to Haley & Aldrich for weekly review. The data will be included in our field transmittals to the project team during construction. Details of our expectations for shoring monitoring are included below.

Adjacent Building Surveys. We recommend that adjacent buildings be surveyed before, during, and after construction. The pre-construction survey will establish the baseline of existing conditions (e.g., identifying the size and locations of any cracks). The surveys should consist of a videotape and/or photographs of the interior and exterior of adjacent buildings and detailed mapping of all cracks. Any existing cracks could be monitored with a crack gauge.

Optical Surveying. We recommend optical surveys of horizontal and vertical movements of: (1) the surface of the adjacent streets, (2) buildings on and adjacent to the site, and (3) the shoring system itself. The contractor, in coordination with the geotechnical engineer, should establish two reference lines adjacent to the excavation at horizontal distances back from the excavation face of about 1/3 H and H, where H is the final excavation height. Typically, these lines will be established near the curb line and across the street from the excavation face. The points on the adjacent buildings can be set either at the base or on the roof of the buildings.

Shoring system monitoring should include measuring vertical and horizontal movement at the top of every other soldier pile, and any geotechnical instrumentation (e.g., inclinometers) used for the project.

The measuring system for the shoring monitoring should have an accuracy of at least 0.01 foot. All reference points on the ground surface should be installed and read before excavation begins. The frequency of readings will depend on the results of previous readings and the rate of construction. At a minimum, readings on the external points should be taken twice a week through construction until below-grade structural elements (floors, decks, columns, etc.) are completed, or as specified by the structural and geotechnical engineers. Readings on the top of soldier piles and the face of existing buildings on or adjacent to the property should be taken at least twice a week during this time. We recommend that an independent surveyor hired by the owner to record the data at least once per week with the other reading taken by the surveyor or contractor.

7.5.3 Post-Construction Survey

A post-construction survey includes reviewing the preconstruction survey and comparing it to post-construction conditions. The survey should include video and/or photographic documentation. Changes in the number, size, and location of cracks in streets and buildings should be given special attention.

7.6 FOUNDATION CONSTRUCTION

Haley & Aldrich should observe exposed subgrades before footing, mat, or slab construction begins to confirm design assumptions about subsurface conditions and subgrade preparation. Exposed subgrade soil that is not firm and unyielding, or that is otherwise considered inadequate by Haley & Aldrich, will need to be over-excavated and replaced with structural fill or CDF or lean mix concrete, depending on the extent and the foundation loading.

Haley & Aldrich should observe any ground improvement placement (overexcavation and replacement and/or aggregate pier installation). Footings or mat slab areas or slab-on-grade areas located over ground improvement must have a load transfer platform 12 to 18 inches thick of gravel or crushed rock.

The exposed subgrade should be carefully prepared and protected before foundation or slab concrete placement. Any loosening of the materials during construction could result in more settlement. It is important that foundation excavations be cleaned of loose or disturbed soil before placing any concrete and that there is no standing water in any foundation excavation. These conditions should be observed by our representative.

Maintain groundwater levels below the base grade of the footing excavation at all times to prevent the risk of heave, piping, boiling, and other loss or disturbance of subgrade material. This groundwater level should be maintained until after the footing steel and concrete are placed.

Any loose or soft soils that occur naturally or are disturbed during construction should be overexcavated and replaced with compacted structural fill or lean mix concrete. Any visible organic and other unsuitable material should be removed from the exposed subgrade.

It may be necessary to place a 2-inch to 4-inch-thick lean or structural concrete mat in footing excavations to protect competent subgrade soil from being softened by water or construction activities

after it is exposed. Concrete may only be placed after the geotechnical engineer has checked the subgrade. Lean mix concrete should be in accordance with WSDOT SS Section 6-02.3(2)D. If softer soils are exposed a more substantial working surface of crushed rock, quarry spalls, and geotextile may be needed to provide a stable surface for construction equipment and personnel.

7.7 EARTHWORK

7.7.1 Site Preparation and Grading

We recommend conducting all site grading, paving, and any utility trenching during relatively dry weather conditions.

It may be necessary to relocate or abandon some utilities. Excavation of these utility lines will probably occur through backfill. Abandoned underground utilities should be removed or completely grouted. Ends of remaining abandoned utility lines should be sealed to prevent piping of soil or water into the pipe. Soft or loose backfill should be removed, and excavations should be backfilled with structural fill. Coordination with the utility agency is generally required.

7.7.2 Structural Fill

Backfill placed within the building area or below paved areas should be considered structural fill. We recommend the following for structural fill:

- For imported soil to be used as structural fill, a clean, well-graded sand or sand and gravel with less than 5 percent by weight passing the No. 200 mesh sieve (based on the minus 3/4-inch fraction) should be used. Compaction of soil containing more than approximately 5 percent fines may be difficult if the material is wet or becomes wet during rainy weather.
- All structural fill should be placed and compacted in lifts with a loose thickness no greater than 10 inches. For hand-operated "jumping jack" compactors, loose lifts should not exceed 6 inches. For small vibrating plate/sled compactors, loose lifts should not exceed 3 inches.
- All structural fill should be compacted to at least 95 percent of the modified Proctor maximum dry density (as determined by ASTM D1557 test procedure).
- The moisture content of the fill should be controlled to within 2 percent of the optimum moisture. Optimum moisture is the moisture content corresponding to the maximum Proctor dry density.
- In wet subgrade areas, clean material with a gravel content of at least 30 to 35 percent may be necessary. Gravel is material coarser than a US No. 4 sieve.
- Before filling begins, samples of the structural and drainage fill should be provided for laboratory testing. Laboratory testing will include a Proctor test and gradation for structural fill and a gradation for drainage fill. Field testing with a nuclear density gauge uses the maximum dry density determined from a Proctor test so it is important to complete the laboratory testing as soon as possible so backfilling is not delayed.

7.7.3 Use of On-Site Soil as Structural Fill

Our explorations indicated that the near-surface site soil includes silty sand, silt, and clay; we do not recommend using these soils for structural fill.

7.7.4 Temporary Cuts

Because of the variables involved, actual slope grades required for stability in temporary cut areas can only be estimated before construction. We recommend that stability of the temporary slopes used for construction be the sole responsibility of the contractor, since the contractor is in control of the construction operation and is continuously at the site to observe the nature and condition of the subsurface. Excavations should be made in accordance with all local, state, and federal safety requirements.

For planning purposes, the soils across the site are likely Occupational Safety Health Administration Soil Classification Type C; however, the soil classification must be reevaluated at the time of construction.

The stability and safety of open trenches and cut slopes depend on a number of factors, including:

- Type and density of the soil;
- Presence and amount of any seepage;
- Depth of cut;
- Proximity of the cut to any surcharge loads near the top of the cut, such as stockpiled material, traffic loads, or structures;
- Duration of the open excavation; and
- Care and methods used by the contractor.

Considering these factors, we recommend:

- Using plastic sheeting to protect slopes from erosion; and
- Limiting the duration of open excavations as much as possible.

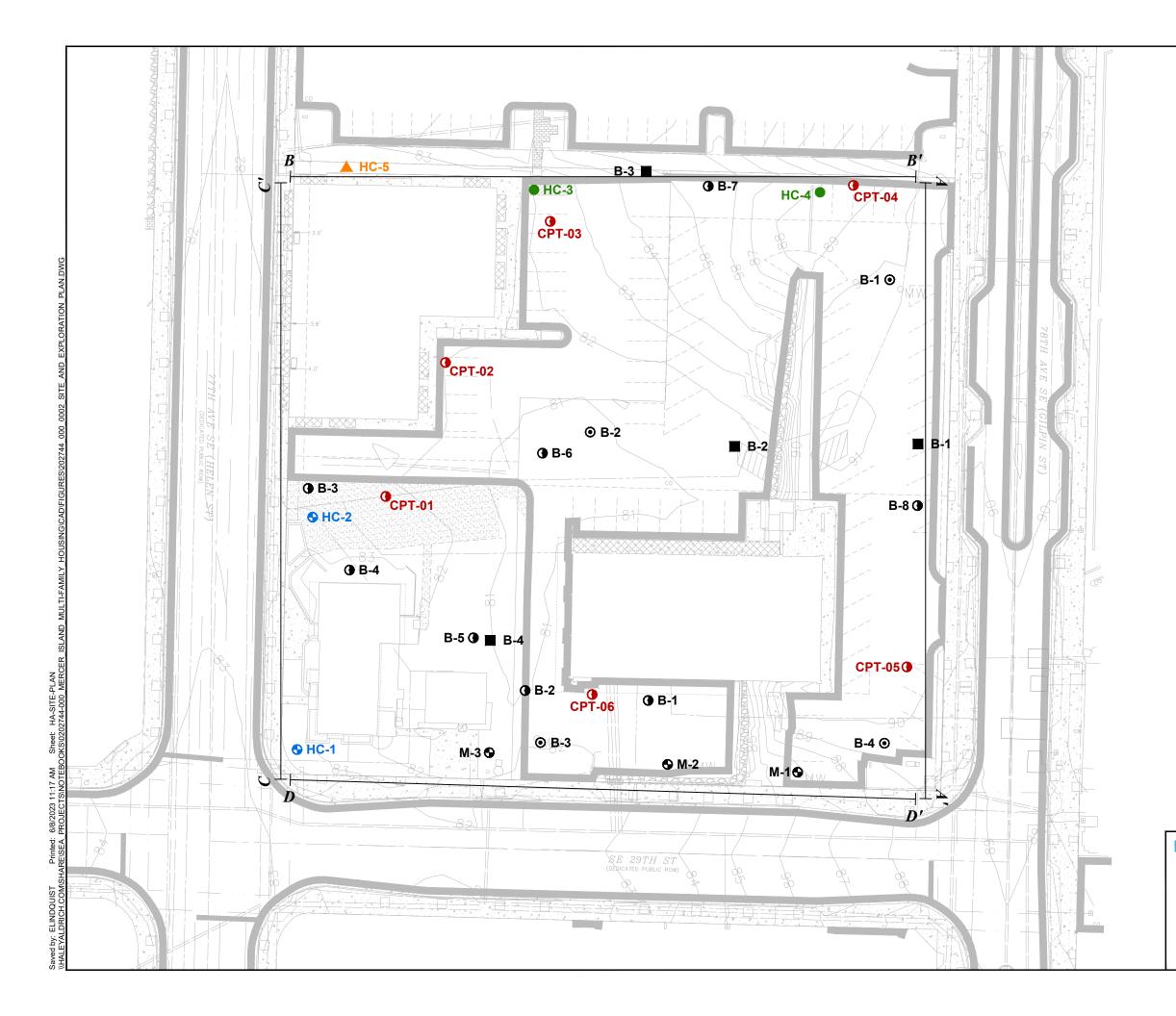
8. Recommendations for Continuing Geotechnical Services

Before construction begins, we recommend that Haley & Aldrich continue to meet with the design team as needed to address geotechnical questions that may arise throughout the remainder of the design and permitting process. We also recommend that Haley & Aldrich review the project plans and specifications to confirm that the geotechnical engineering recommendations have been properly interpreted.

During construction, we recommend that Haley & Aldrich be retained to perform the following tasks:

- Review contractor submittals;
- Observe shoring installation;
- Observe general excavation, over-excavation, all backfill and testing, ground improvement, foundation and slab installations;
- Perform other observations as required by the City of Mercer Island Planning Department and the building permit conditions;
- Attend meetings, as needed; and
- Provide geotechnical engineering support that may arise during construction.

References


- 1. Federal Highway Administration. 1999. Geotechnical Engineering Circular No. 4, Ground Anchors and Anchored Systems. FHWA-IF-99-015. June 1999
- 2. Hart Crowser. 2020. Geotechnical Engineering Design Report for Multi-Family Development, Mercer Island, WA. November 2020.
- 3. International Building Code. 2015. International Building Code. International Code Council.
- 4. Idriss, I.M. and R.W. Boulanger. 2008. *Soil Liquefaction during Earthquakes* by Earthquake Engineering Research Institute MNO-12
- 5. Post Tensioning Institute. 2004. Recommendations for Prestressed Rock and Soil Anchors, Third Edition. Post Tensioning Institute.
- 6. Washington State Department of Transportation. 2020. Standard Specifications for Road, Bridge, and Municipal Construction

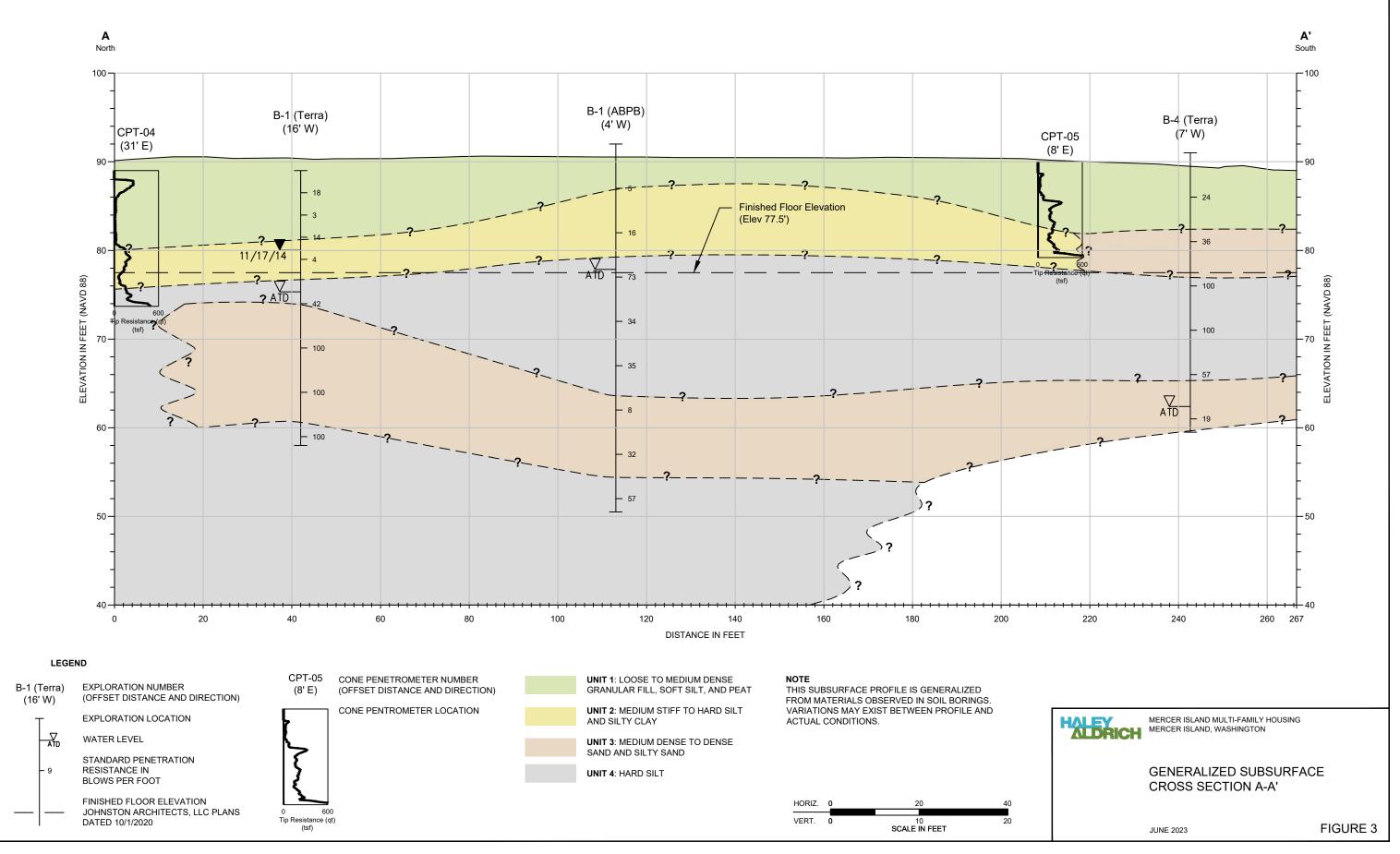
\\haleyaldrich.com\share\sea_projects\Notebooks\0202744-000_Mercer_Island_Multi-Family_Housing\Deliverables In-Basket\Revisied Design Report\2023_0612_HAI_Mercer Island Mixed Use Revised Geotechnical Engineering Design Study_F.docx

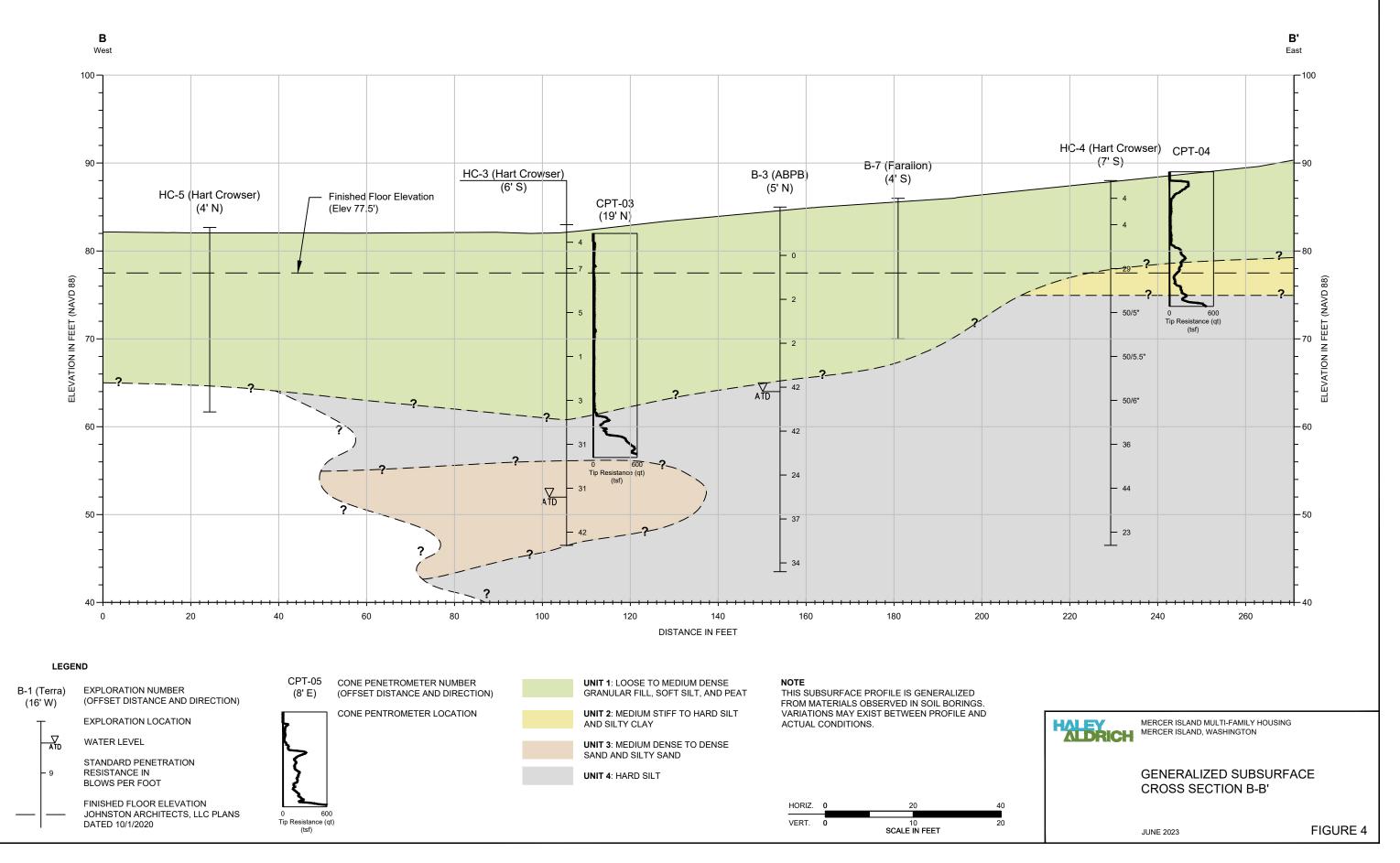
FIGURES

LEGEND	
HC-3 🔴	BORING (HART CROWSER)
HC-5 🔺	HAND PROBE (HART CROWSER)
HC-1 🚱	MONITORING WELL (HART CROWSER)
CPT-01()	CONE PENETROMETER TESTING (HART CROWSER)
B-1 📕	BORING (ABPB CONSULTING)
B-6 🕒	PUSH PROBE (FARALLON)
M-1 😌	MONITORING WELL (ABPB CONSULTING)
B-1 🕥	BORING (TERRA)
├	CROSS SECTION

NOTES

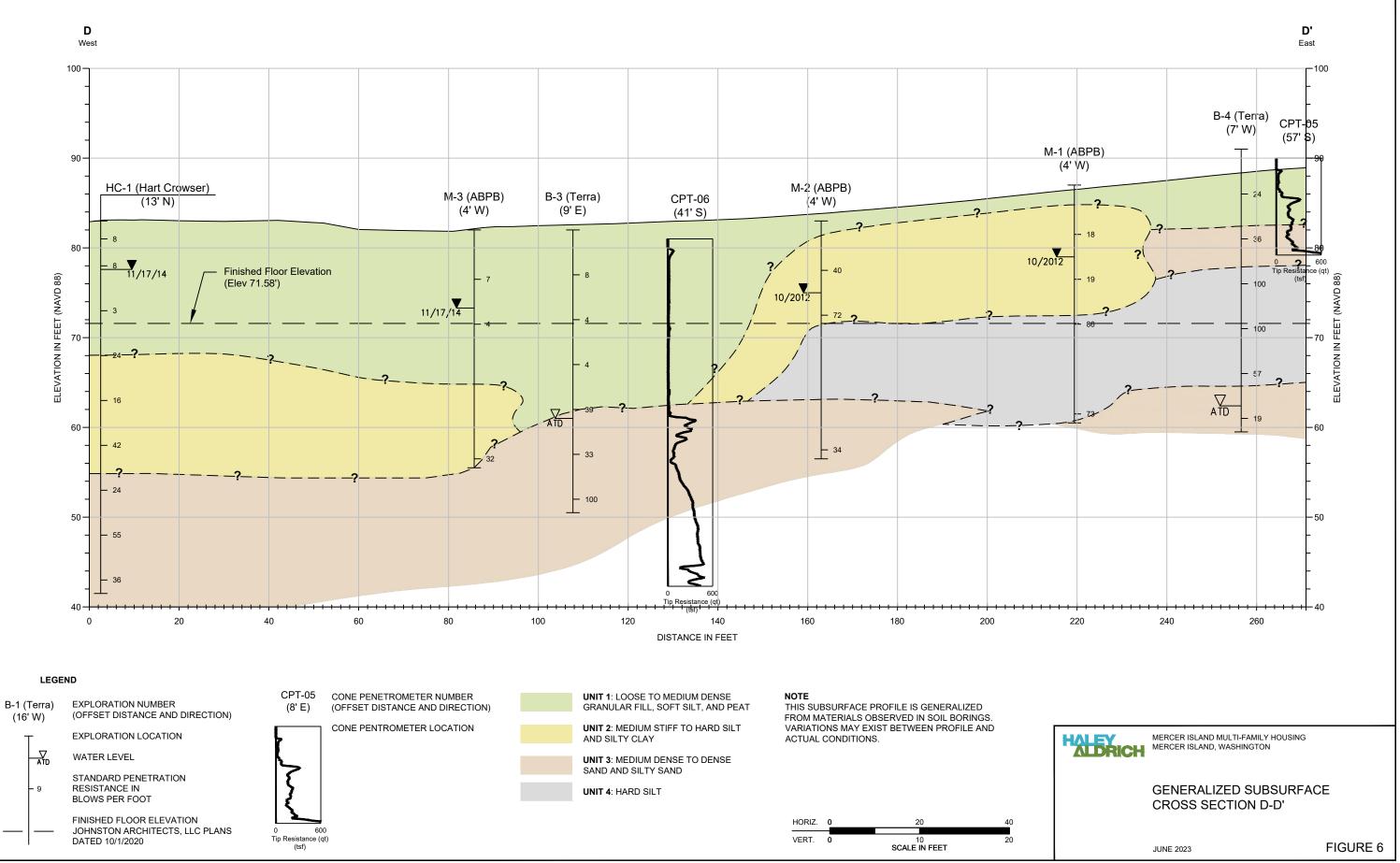
- FEATURE LOCATIONS AND DIMENSIONS ARE APPROXIMATE.
 SURVEY BASE SOURCE: BUSH, ROED & HITCHINGS 14 OCTOBER 2014.

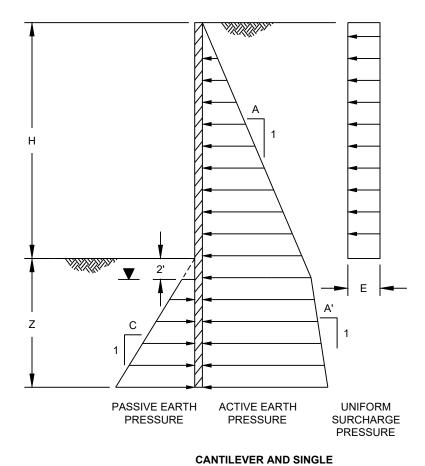


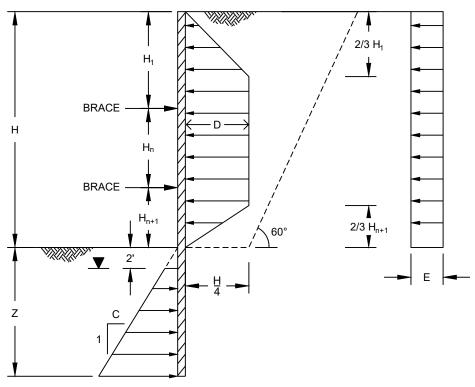

SCALE IN FEET

MERCER ISLAND MULTI-FAMILY HOUSING MERCER ISLAND, WASHINGTON


SITE AND EXPLORATION PLAN


JUNE 2023




HA-5744 ខ្លុង

AND HA-SEC-D 2744-000 MI 68 Q 223 ELINDQL

PASSIVE EARTH ACTIVE EARTH PRESSURE PRESSURE

BRACED WALL

Recommended Lateral Earth Pressures

	A (Above GWT)	A' (Below GWT)	C (Above GWT)	C (Below GWT)	D	E
ACTIVE	42 pcf	21 pcf	-	-	30H psf	85 psf
AT-REST	60 pcf	30 pcf	-	-	45H psf	125 psf
PASSIVE	-	-	300 pcf	175 pcf	-	-

NOTES

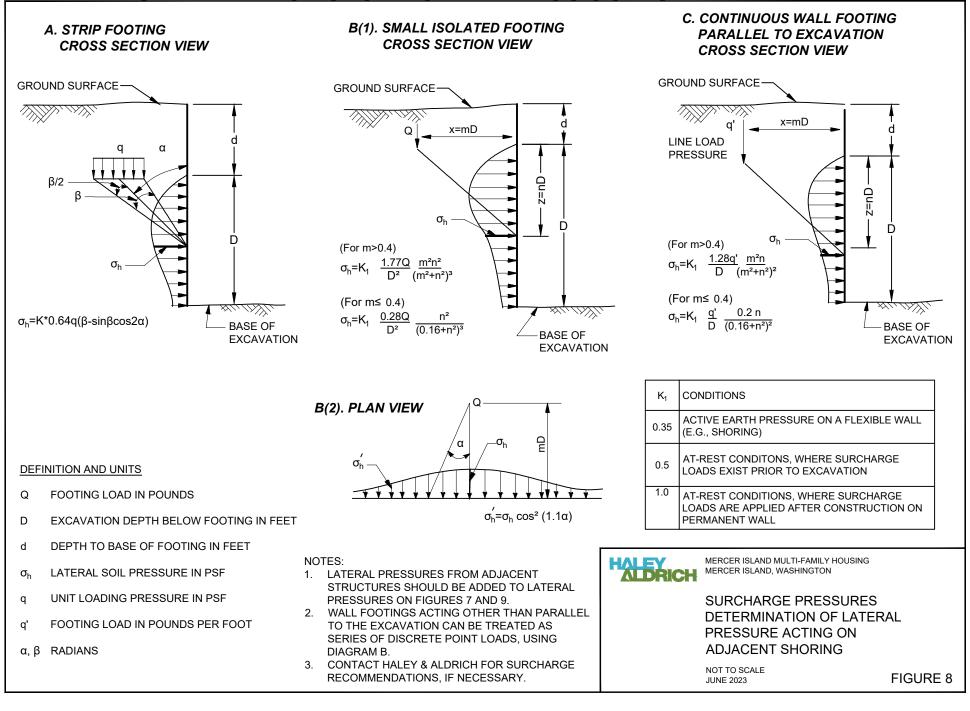
- ALL EARTH PRESSURES ARE IN UNITS OF POUNDS PER SQUARE FOOT.
 MINIMUM RECOMMENDED EMBEDMENT (Z) IS 8 FEET.
- 2.
- 3. PASSIVE PRESSURES ARE ALLOWABLE VALUES AND INCLUDE A 1.5 FACTOR OF SAFETY.
- 4. PASSIVE PRESSURE ACTS OVER 2.5 TIMES THE CONCRETED DIAMETER OF THE SOLDIER
- PILE OR THE THE PILE SPACING, WHICHEVER IS LESS. APPARENT EARTH PRESSURE, ACTIVE EARTH PRESSURE, AND SURCHARGE ACT OVER THE 5.
- PILE SPACING ABOVE THE BASE OF THE EXCAVATION. 6. ACTIVE PRESSURE ACTS OVER THE PILE DIAMETER BELOW THE EXCAVATION.
- ADDITIONAL SURCHARGE FROM FOOTINGS, LARGE STOCKPILES, HEAVY EQUIPMENT, ETC., 7.
- MUST BE ADDED TO THESE PRESSURES.
- 8. ALL DIMENSIONS ARE IN FEET.
- 9. DIAGRAMS ARE NOT TO SCALE.

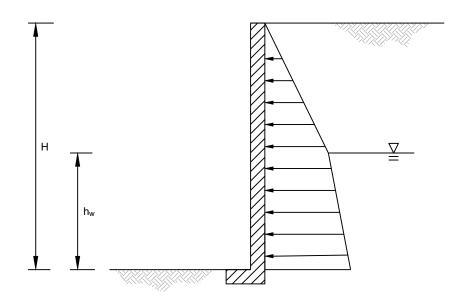
LEGEND

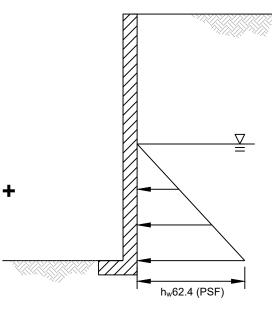
- TOTAL HEIGHT OF EXCAVATION, FEET н
- H₁ DEPTH TO UPPERMOST TIEBACK, FEET
- HEIGHT BETWEEN TIEBACKS, FEET H_N
- DISTANCE FROM BASE OF EXCAVATION TO LOWERMOST TIEBACK, FEET
- Ζ EMBEDMENT DEPTH, FEET
- A,B,C, ... EARTH PRESSURE FACTORS, SEE TABLE
- NO-LOAD ZONE -----
- GROUNDWATER TABLE (GWT)
- H_{n+1}

UNIFORM SURCHARGE PRESSURE

MULTI BRACED WALL




MERCER ISLAND MULTI-FAMILY HOUSING


LATERAL EARTH PRESSURE **TEMPORARY SHORING**

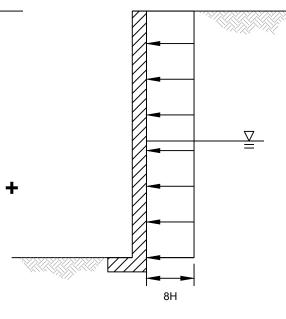
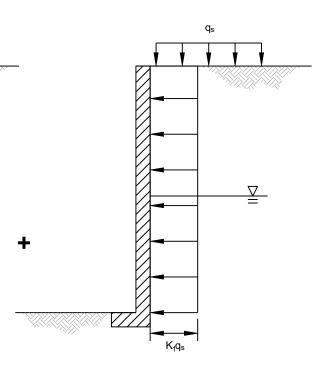

NOT TO SCALE JUNE 2023

FIGURE 7

DYNAMIC INERTIAL INCREMENT

EARTH PRESSURE*

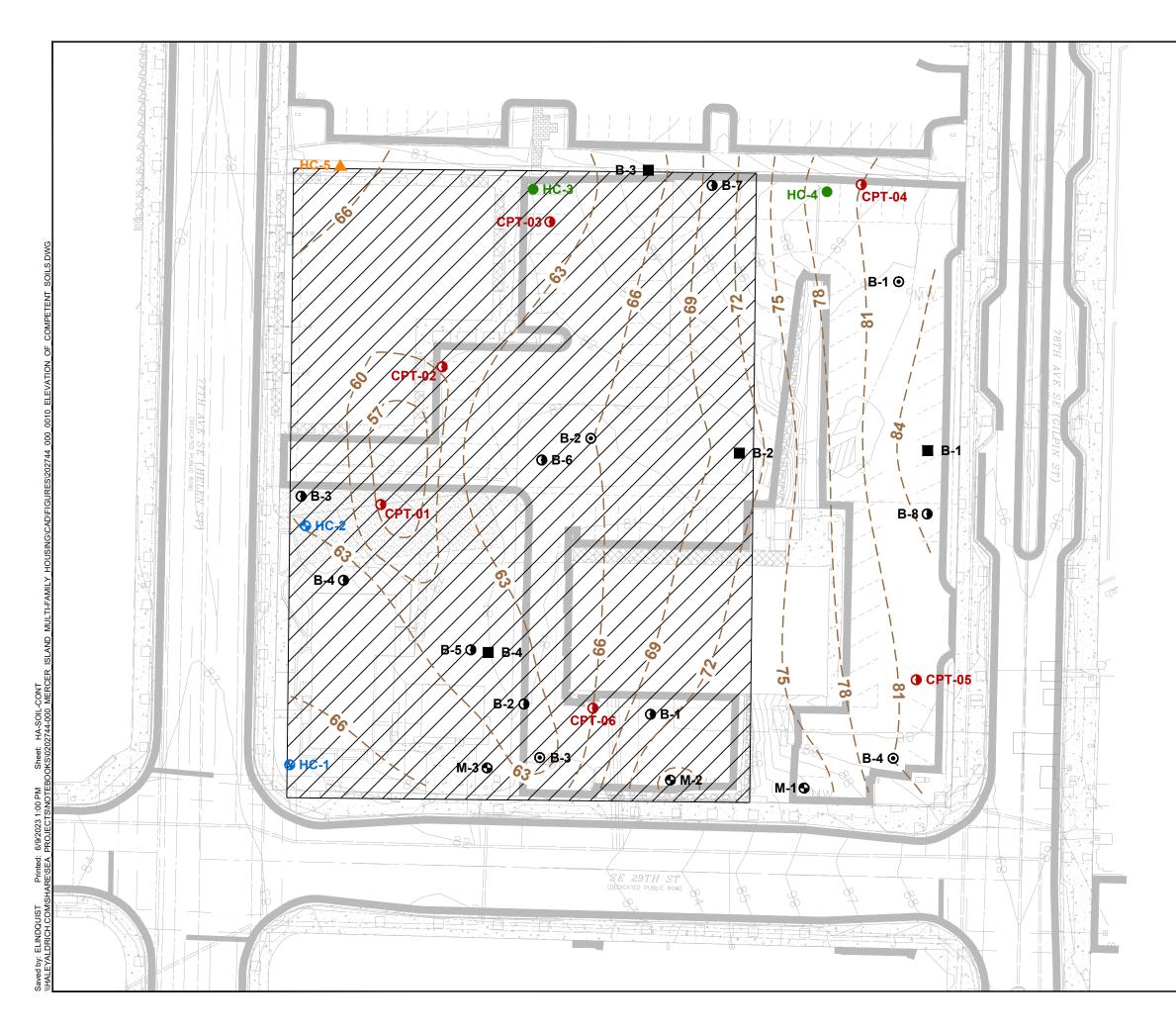
* THE SAME EARTH PRESSURE DISTRIBUTIONS DETERMINED FOR TEMPORARY SHORING SHOULD BE USED FOR PERMANENT WALLS CONSTRUCTED AGAINST SHORING (SEE FIGURE 7).



** NEGLECT WATER PRESSURE IF PERMANENTLY DRAINED

- Н HEIGHT FROM BOTTOM OF EXCAVATION TO GROUND SURFACE IN FEET
- TRAFFIC SURCHARGE qs
- DEPTH OF EXCAVATION BELOW GROUNDWATER TABLE h_{w}
- ⊒ GROUNDWATER TABLE

NOTES


- 1. ALL PRESSURES ARE IN UNITS OF POUNDS PER SQUARE FOOT.
- 2. DIAGRAMS DO NOT INCLUDE SURCHARGE LOADING DUE TO ADJACENT STRUCTURES; SEE FIGURE 8. 3. DIAGRAMS NOT TO SCALE.

UNIFORM SURCHARGE***

*** SEE FIGURE 8 FOR K1

LEGEND	
HC-3 ●	BORING (HART CROWSER)
HC-5 🔺	HAND PROBE (HART CROWSER)
HC-1 🕒	MONITORING WELL (HART CROWSER)
CPT-01 ()	CONE PENETROMETER TESTING (HART CROWSER)
B-1 📕	BORING (ABPB CONSULTING)
B-6 🕒	PUSH PROBE (FARALLON)
M-1 🗣	MONITORING WELL (ABPB CONSULTING)
B-1 🕥	BORING (TERRA)
	TOP OF COMPETENT SOILS (CONTOUR ELEVATION IN FEET)
	APPROXIMATE ZONE OF GROUND IMPROVEMENT

NOTES

- FEATURE LOCATIONS AND DIMENSIONS ARE APPROXIMATE.
 SURVEY BASE SOURCE: BUSH, ROED & HITCHINGS 14 OCTOBER 2014.

40

SCALE IN FEET

APPENDIX A Field Exploration Methods and Analysis

Key to Exploration Logs

Sample Description

Classification of soils in this report is based on visual field and laboratory observations which include density/consistency, moisture condition, grain size, and plasticity estimates and should not be construed to imply field nor laboratory testing unless presented herein. Visual-manual classification methods of ASTM D 2488 were used as an identification guide.

Soil descriptions consist of the following:

Density/consistency, moisture, color, minor constituents, MAJOR CONSTITUENT, additional remarks.

Density/Consistency

Soil density/consistency in borings is related primarily to the Standard Penetration Resistance. Soil density/consistency in test pits and probes is estimated based on visual observation and is presented parenthetically on the

logs. SAND or GRAVEL Density	Standard Penetration Resistance (N) in Blows/Foot	SILT or CLAY Consistency	Standard Penetration Resistance (N) in Blows/Foot	Approximate Shear Strength in TSF
Very loose	0 to 4	Very soft	0 to 2	<0.125
Loose	4 to 10	Soft	2 to 4	0.125 to 0.25
Medium dense	10 to 30	Medium stiff	4 to 8	0.25 to 0.5
Dense	30 to 50	Stiff	8 to 15	0.5 to 1.0
Very dense	>50	Very stiff	15 to 30	1.0 to 2.0
		Hard	>30	>2.0

Sampling Test Symbols

1.5" I.D. Split Spoon

Cuttings

Shelby Tube (Pushed)

Bag Core Run

Grab (Jar)

3.0" I.D. Split Spoon

SOIL CLASSIFICATION CHART

			SYM	BOLS	TYPICAL	
IV	AJOR DIVISI	UNS	GRAPH LETTER		DESCRIPTIONS	
	GRAVEL AND	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES	
	GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES	
COARSE GRAINED SOILS	MORE THAN 50% OF COARSE FRACTION	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES	
	RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES	
MORE THAN 50% OF MATERIAL IS	SAND AND	CLEAN SANDS	•••	sw	WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES	
LARGER THAN NO. 200 SIEVE SIZE	SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND, LITTLE OR NO FINES	
	MORE THAN 50% OF COARSE FRACTION	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES	
	PASSING ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		SC	CLAYEY SANDS, SAND - CLAY MIXTURES	
				ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY	
FINE GRAINED SOILS	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS	
00120			 	OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY	
MORE THAN 50% OF MATERIAL IS SMALLER THAN NO. 200 SIEVE				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAND OR SILTY SOILS	
SIZE	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY	
				он	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS	
Н	GHLY ORGANIC S	SOILS	ىلىر غلىر - غلىر غا	РТ	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS	

Moisture

Dry Little perceptible moisture

Damp Some perceptible moisture, likely below optimum

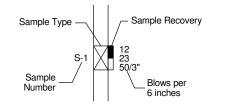
Moist Likely near optimum moisture content

Wet Much perceptible moisture, likely above optimum

Minor Constituents	Estimated Percentage
Trace	<5
Slightly (clayey, silty, etc.)	5 - 12
Clayey, silty, sandy, gravelly	12 - 30
Very (clayey, silty, etc.)	30 - 50

Laboratory Test Symbols

	• •
GS	Grain Size Classification
CN	Consolidation
UU	Unconsolidated Undrained Triaxial
CU	Consolidated Undrained Triaxial
CD	Consolidated Drained Triaxial
QU	Unconfined Compression
DS	Direct Shear
K	Permeability
PP	Pocket Penetrometer
	Approximate Compressive Strength in TSF
ΤV	Torvane
	Approximate Shear Strength in TSF
CBR	California Bearing Ratio
MD	Moisture Density Relationship
AL	Atterberg Limits
	Water Content in Percent
	Liquid Limit
	Natural Plastic Limit
PID	Photoionization Detector Reading
CA	Chemical Analysis
DT	

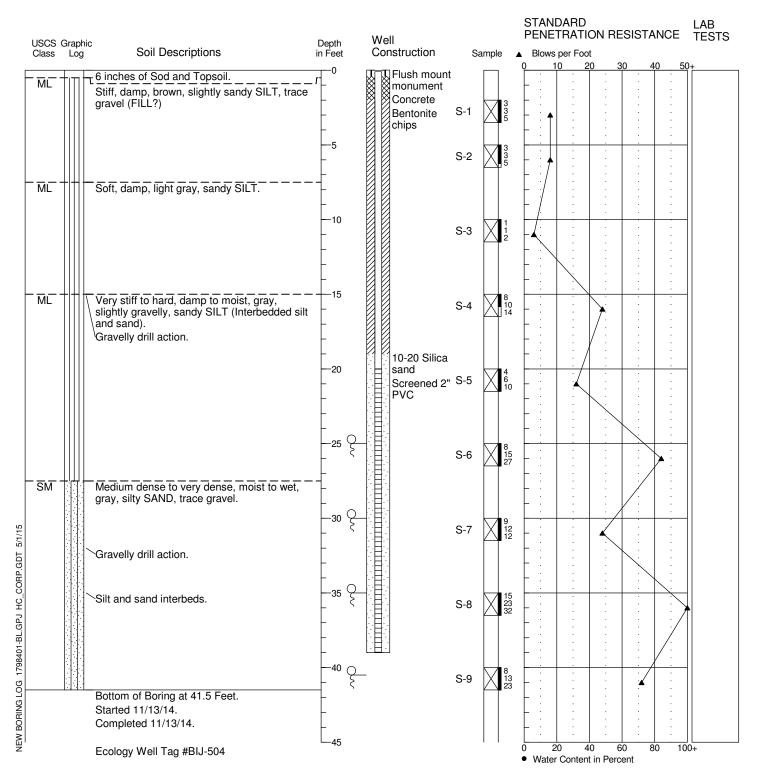

- DT In Situ Density in PCF
- OT Tests by Others

Groundwater Indicators

Groundwater Level on Date or (ATD) At Time of Drilling

♀ Groundwater Seepage
 ♦ (Test Pits)

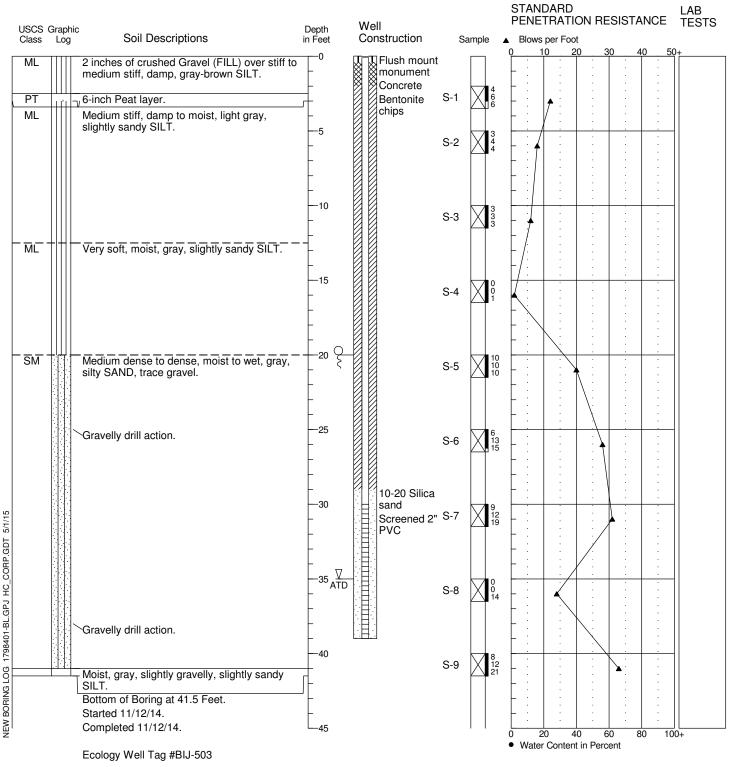
Sample Key



KEY SHEET 1798401-BL.GPJ HC_CORP.GDT 5/1/15

NOTE: DUAL SYMBOLS ARE USED TO INDICATE BORDERLINE SOIL CLASSIFICATIONS

Location: 47.584459, -122.234890 Approximate Ground Surface Elevation: 83 Feet Horizontal Datum: WGS84 Vertical Datum: NAVD88 Drill Equipment: HSA (Diedrich D50) Hammer Type: Auto-Trip Hole Diameter: 8 inches Logged By: M. Smith Reviewed By: M. Veenstra

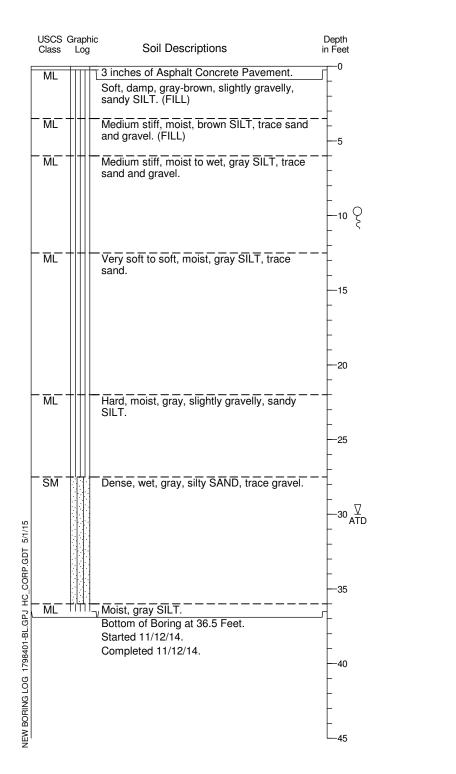

1. Refer to Figure A-1 for explanation of descriptions and symbols.

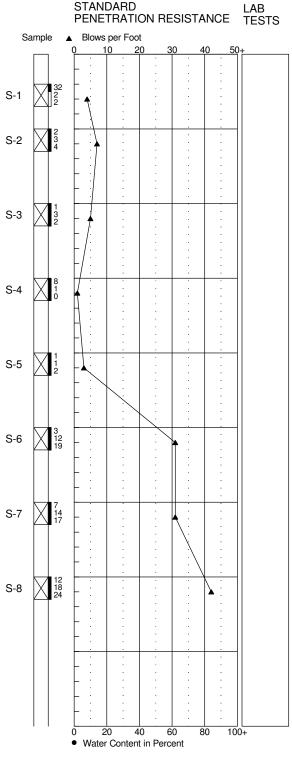
Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 USCS designations are based on visual manual algoritization (ASTM D 2488) uplace other

3. USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).

Location: 47.584729, -122.234870 Approximate Ground Surface Elevation: 83 Feet Horizontal Datum: WGS84 Vertical Datum: NAVD88 Drill Equipment: HSA (Diedrich D50) Hammer Type: Auto-Trip Hole Diameter: 8 inches Logged By: M. Smith Reviewed By: M. Veenstra

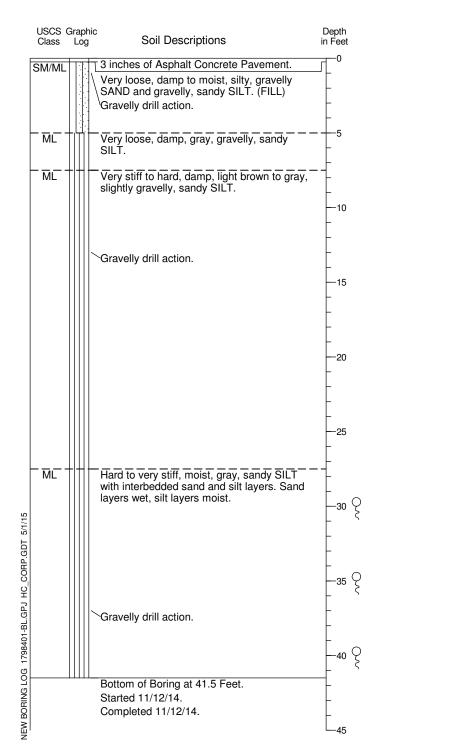
1. Refer to Figure A-1 for explanation of descriptions and symbols.

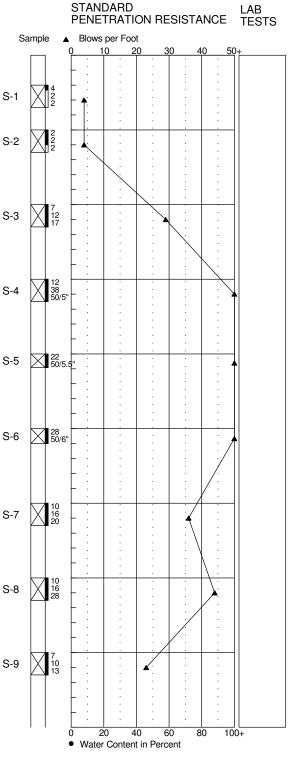

2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual.


 USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).

Location: 47.585134, -122.234493 Approximate Ground Surface Elevation: 83 Feet Horizontal Datum: WGS84 Vertical Datum: NAVD88

Drill Equipment: HSA (Diedrich D50) Hammer Type: Auto-Trip Hole Diameter: 8 inches Logged By: M. Smith Reviewed By: M. Veenstra




1. Refer to Figure A-1 for explanation of descriptions and symbols.

Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 USCS designations are based on visual manual classification (ASTM D 2488) unless other

 USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).

Location: 47.585142, -122.233965 Approximate Ground Surface Elevation: 88 Feet Horizontal Datum: WGS84 Vertical Datum: NAVD88 Drill Equipment: HSA (Diedrich D50) Hammer Type: Auto-Trip Hole Diameter: 8 inches Logged By: M. Smith Reviewed By: M. Veenstra

1. Refer to Figure A-1 for explanation of descriptions and symbols.

2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual.

 USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).

Location: Lat: 47.58453 Long: -122.2343 Approximate Ground Surface Elevation: 82 Feet Horizontal Datum: WGS 84 Vertical Datum: NAVD88

Drill Equipment: Push Probe Sample Type: Acetate Liner Hole Diameter: 2 inches Logged By: W. McDonald Reviewed By: M. Veenstra

USCS Class	Graphi Log	c Soil Descriptions	Depth in Feet	Sample	LAB TESTS & (PID)
SP		^τ 2 inches of Asphalt. (Loose), moist, gray-brown, slightly silty, slightly gravelly SAND. (FILL)		S-1	- (<0.1) No odor, NS
ML		(Medium stiff to stiff), moist, gray-brown, mottled, clayey SILT with fine sand pockets and trace organic material.		S-2	- (<0.1) No odor, NS PP=1.0 TSF
- <u>M</u> _		(Soft to medium stiff), moist to wet, brown, sandy SILT.		S-3	- (<0.1) No odor, NS
PUSH PROBE LOG-ENV 1798400-PP.GPJ HC_CORP.GDT 5/1/15		(Soft), moist, gray, clayey SILT. Bottom of Probe at 12.0 Feet. Started 09/27/13. Completed 09/27/13.			

1. Refer to Figure A-1 for explanation of descriptions and symbols.

Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).
 Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

Location: Lat: 47.58454 Long: -122.2345 Approximate Ground Surface Elevation: 82 Feet Horizontal Datum: WGS 84 Vertical Datum: NAVD88

Drill Equipment: Push Probe Sample Type: Acetate Liner Hole Diameter: 2 inches Logged By: W. McDonald Reviewed By: M. Veenstra

USCS Class	Graph Log	^{ic} Soil Descriptions	Depth in Feet	Sample	LAB TESTS & (PID)
SP		2 inches of Asphalt. (Loose to medium dense), moist, brown, slightly silty, gravelly, fine to coarse SAND. (FILL)		S-1	- (<0.1) Slight odor, NS
ML		(Medium stiff to stiff), moist, gray, slightly sandy SILT with trace organic material to (soft to medium stiff), moist, gray to red-brown, mottled, clayey SILT with fine sand pockets.		S-2	- (<0.1) No odor, NS PP=2.0 TSF
		∕~Wet.	- ATD -	S-3	- (<0.1) No odor, NS PP=0.5
CORP.GDT 5/1/15	L	(Soft), moist, gray, clayey SILT.	- 10		TSF
PUSH PROBE LOG-ENV 1798400-PP.GPJ HC_CORP.GDT 5/1/15		Bottom of Probe at 12.0 Feet. Started 09/27/13. Completed 09/27/13.			
PUSH PROBE					

1. Refer to Figure A-1 for explanation of descriptions and symbols.

- Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise

supported by laboratory testing (ASTM D 2487). 4. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

Location: Lat: 47.58477 Long: -122.2349 Approximate Ground Surface Elevation: 84 Feet Horizontal Datum: WGS 84 Vertical Datum: NAVD88

Drill Equipment: Push Probe Sample Type: Acetate Liner Hole Diameter: 2 inches Logged By: W. McDonald Reviewed By: M. Veenstra

	USCS Class	Graphi Log	^{ic} Soil Descriptions	Depth in Feet	Sample	LAB TESTS
	GP		4 inches of Gravel over (medium dense), moist, brown-gray, slightly silty, sandy GRAVEL.	0 	S-1	- No odor, NS
	ML		(Soft), moist, red-brown, sandy SILT to black organic SILT.			
	ML		(Very stiff), moist, red-brown to gray, slightly sandy, mottled SILT with scattered organic material.	5	S-2	- No odor, NS PP=3.0 TSF
/15	ML		(Stiff), moist, gray, laminated, slightly sandy to sandy SILT.	 10	S-3	- No odor, NS PP=1.5 TSF
PUSH PROBE LOG-ENV 1798400-PP.GPJ HC_CORP.GDT 5/1/15			Bottom of Probe at 12.0 Feet. Started 09/27/13. Completed 09/27/13.			

1. Refer to Figure A-1 for explanation of descriptions and symbols.

- Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise

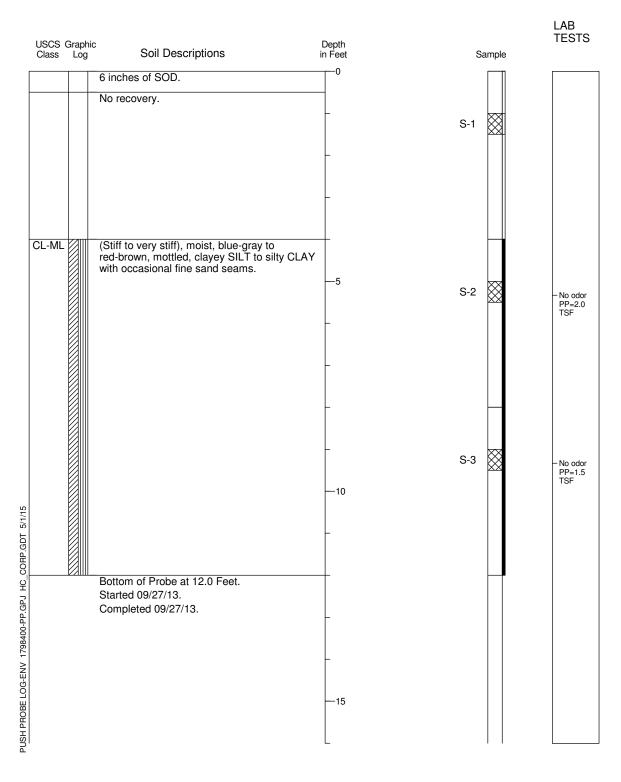
supported by laboratory testing (ASTM D 2487). 4. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

Location: Lat: 47.58468 Long: -122.2348 Approximate Ground Surface Elevation: 84 Feet Horizontal Datum: WGS 84 Vertical Datum: NAVD88

Drill Equipment: Push Probe Sample Type: Acetate Liner Hole Diameter: 2 inches Logged By: W. McDonald Reviewed By: M. Veenstra

	USCS Gra Class L	aphi _og	c Soil Descriptions	Depth in Feet San	nple	LAB TESTS
	ML		4 inches of sandy GRAVEL. (Soft), moist, brown, gravelly, sandy SILT. (FILL)		\otimes	- No odor PP=0.5 TSF
			(Loose), moist, gray to red-brown, sandy GRAVEL to fine to medium SAND. (Stiff to very stiff), moist, red-brown to gray, mottled SILT with scattered organic material.			
				-5 S-2	8	- No odor PP=2.5 TSF
	CL-ML		(Medium stiff to stiff), moist, blue-gray to brown, clayey SILT to silty CLAY with occasional laminated, slightly sandy silt seams.			
GPJ HC_CORP.GDT 5/1/15				- S-3		- No odor PP=1.5 TSF
PUSH PROBE LOG-ENV 1798400-PP.GPJ HC_CC		<u>a</u>	Bottom of Probe at 12.0 Feet. Started 09/27/13. Completed 09/27/13. Approximately 4 feet of water observed in hole after completion.	-		
PUSH PROBE				15		

1. Refer to Figure A-1 for explanation of descriptions and symbols.


- Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise

supported by laboratory testing (ASTM D 2487). 4. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

Location: Lat: 47.5846 Long: -122.2346 Approximate Ground Surface Elevation: 81 Feet Horizontal Datum: WGS 84 Vertical Datum: NAVD88

Drill Equipment: Push Probe Sample Type: Acetate Liner Hole Diameter: 2 inches Logged By: W. McDonald Reviewed By: M. Veenstra

1. Refer to Figure A-1 for explanation of descriptions and symbols.

- Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise

supported by laboratory testing (ASTM D 2487). 4. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

Location: Lat: 47.58482 Long: -122.2345 Approximate Ground Surface Elevation: 81 Feet Horizontal Datum: WGS 84 Vertical Datum: NAVD88

Drill Equipment: Push Probe Sample Type: Acetate Liner Hole Diameter: 2 inches Logged By: W. McDonald Reviewed By: M. Veenstra

USCS Gr Class L	raphic Log Soil Descriptions	Depth in Feet	Sample	LAB TESTS
	4 inches of Asphalt over 8 inches of Base Course.			
ML CL	(Very stiff), moist, blue-gray to red-brown mottled, clayey SILT to silty CLAY with scattered organic material.	-	S-1	- No odor PP=2.0 TSF
		5	S-2	No oder
CL-ML	(Soft to medium stiff), moist to wet, red-brown to gray, mottled, silty CLAY to clayey SILT with fine silty sand seams.			- No odor PP=2.0 TSF
CORP.GDT 5/1/15		10 	S-3	- No odor PP=0.5 TSF
PUSH PROBE LOG-ENV 1798400-PP.GPJ HC_CORP.GDT 5/1/15	Bottom of Probe at 12.0 Feet. Started 09/27/13. Completed 09/27/13.			
PUSH PROE				

1. Refer to Figure A-1 for explanation of descriptions and symbols.

Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).
 Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

Location: Lat: 47.58514 Long: -122.2342 Approximate Ground Surface Elevation: 86 Feet Horizontal Datum: WGS 84 Vertical Datum: NAVD88

Drill Equipment: Push Probe Sample Type: Acetate Liner Hole Diameter: 2 inches Logged By: W. McDonald Reviewed By: M. Veenstra

CL-ML (Very stiff), moist, blue-gray to red-brown, mottled, silty CLAY to clayey SILT with scattered organic material.	3 STS
CL-ML (Very stiff), moist, blue-gray to red-brown, mottled, silty CLAY to clayey SILT with scattered organic material. - - - - - - - - - - - - - - - - - - -	
mottled, silty CLAY to clayey SILT with scattered organic material.	odor =2.75 =
-5 S-2 S-2	
	odor =3.5 =
Grades to (stiff), moist, blue-gray to red-brown, laminated, slightly sandy, clayey SILT to silty CLAY.	odor
	=1.5
Grades to (very soft to medium stiff), moist to wet, blue-gray to red-brown, mottled, silty CLAY.	
	odor =<0.25 =
Bottom of Probe at 16.0 Feet. Started 09/27/13.]

Completed 09/27/13.

1. Refer to Figure A-1 for explanation of descriptions and symbols.

- Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise

supported by laboratory testing (ASTM D 2487). 4. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

Location: Lat: 47.58477 Long: -122.2338 Approximate Ground Surface Elevation: 92 Feet Horizontal Datum: WGS 84 Vertical Datum: NAVD88

Drill Equipment: Push Probe Sample Type: Acetate Liner Hole Diameter: 2 inches Logged By: W. McDonald Reviewed By: M. Veenstra

	USCS Class	Grap Loç	hic g Soil Descriptions	Depth in Feet	Sample	LAB TESTS
	ML		4 inches of Asphalt over Base Course and Brick. (Medium stiff), moist, brown to gray, gravelly, sandy SILT. (FILL)		S-1	- No odor PP=1.0 TSF
	ML		(Very stiff), moist, gray, slightly mottled, fine to medium sandy SILT.		S-2	- No odor PP=3.0 TSF
GPJ HC_CORP.GDT 5/1/15	ML		(Very stiff to hard), damp, brown, fine to medium sandy SILT. Grades to moist brown, slightly sandy SILT with occasional organic material.		S-3	- No odor - No odor PP=>4.0 TSF
PUSH PROBE LOG-ENV 1798400-PP.GPJ HC			Bottom of Probe at 13.0 Feet. Started 09/27/13. Completed 09/27/13.			

1. Refer to Figure A-1 for explanation of descriptions and symbols.

- Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise

supported by laboratory testing (ASTM D 2487). 4. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

WILDCAT DYNAMIC CONE LOG

Hart Crowser		
1700 Westlake Ave N.	PROJECT NUMBER:	1798401
Seattle, WA 98109	DATE STARTED:	11-20-2014
	DATE COMPLETED:	11-20-2014
HOLE #: <u>HC-5</u>		
CREW: Jesse Overton	SURFACE ELEVATION:	
PROJECT: Mercer Island Multi-Family	WATER ON COMPLETION:	
ADDRESS:	HAMMER WEIGHT:	35 lbs.
LOCATION: Mercer Island, Washington	CONE AREA:	10 sq. cm

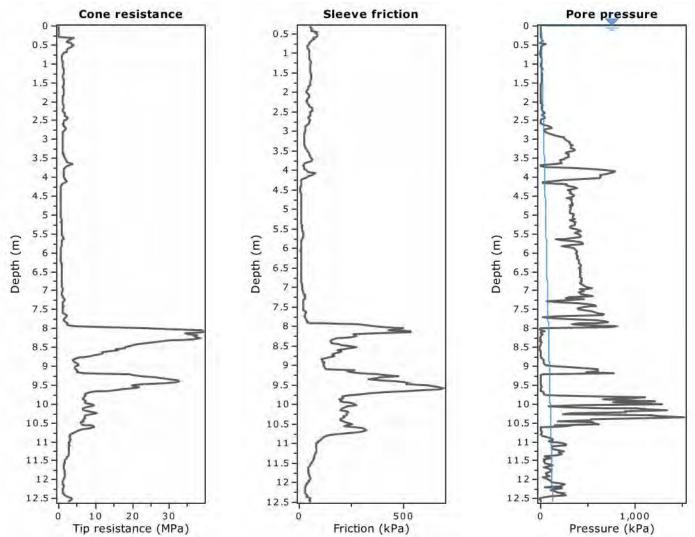
	BLOWS	RESISTANCE	GRAPH OF CONE RESISTANCE		TESTED CO	NSISTENCY
DEPTH	PER 10 cm	Kg/cm ²	0 50 100 150	N'	NON-COHESIVE	COHESIVE
-	18	79.9	•••••	22	MEDIUM DENSE	VERY STIFF
-	23	102.1	•••••	25+	MEDIUM DENSE	VERY STIFF
- 1 ft	14	62.2	•••••	17	MEDIUM DENSE	VERY STIFF
-	12	53.3	•••••	15	MEDIUM DENSE	STIFF
-	10	44.4	•••••	12	MEDIUM DENSE	STIFF
- 2 ft	9	40.0	•••••	11	MEDIUM DENSE	STIFF
-	9	40.0	•••••	11	MEDIUM DENSE	STIFF
-	10	44.4	•••••	12	MEDIUM DENSE	STIFF
- 3 ft	14	62.2	•••••	17	MEDIUM DENSE	VERY STIFF
- 1 m	9	40.0	•••••	11	MEDIUM DENSE	STIFF
-	11	42.5	•••••	12	MEDIUM DENSE	STIFF
- 4 ft	11	42.5	•••••	12	MEDIUM DENSE	STIFF
-	11	42.5	•••••	12	MEDIUM DENSE	STIFF
-	10	38.6	•••••	11	MEDIUM DENSE	STIFF
- 5 ft	8	30.9	•••••	8	LOOSE	MEDIUM STIFF
-	6	23.2	•••••	6	LOOSE	MEDIUM STIFF
-	6	23.2	•••••	6	LOOSE	MEDIUM STIFF
- 6 ft	7	27.0	•••••	7	LOOSE	MEDIUM STIFF
-	6	23.2	•••••	6	LOOSE	MEDIUM STIFF
- 2 m	6	23.2	•••••	6	LOOSE	MEDIUM STIFF
- 7 ft	6	20.5	••••	5	LOOSE	MEDIUM STIFF
-	6	20.5	••••	5	LOOSE	MEDIUM STIFF
-	5	17.1	••••	4	VERY LOOSE	SOFT
- 8 ft	6	20.5	••••	5	LOOSE	MEDIUM STIFF
-	5	17.1	••••	4	VERY LOOSE	SOFT
-	5	17.1	••••	4	VERY LOOSE	SOFT
- 9 ft	6	20.5	••••	5	LOOSE	MEDIUM STIFF
-	6	20.5	••••	5	LOOSE	MEDIUM STIFF
-	6	20.5	••••	5	LOOSE	MEDIUM STIFF
- 3 m 10 ft	6	20.5	••••	5	LOOSE	MEDIUM STIFF
-	6	18.4	••••	5	LOOSE	MEDIUM STIFF
-	6	18.4	••••	5	LOOSE	MEDIUM STIFF
-	12	36.7	••••••	10	LOOSE	STIFF
- 11 ft	9	27.5	•••••	7	LOOSE	MEDIUM STIFF
-	6	18.4	••••	5	LOOSE	MEDIUM STIFF
-	7	21.4	•••••	6	LOOSE	MEDIUM STIFF
- 12 ft	4	12.2	•••	3	VERY LOOSE	SOFT
-	5	15.3	••••	4	VERY LOOSE	SOFT
-	6	18.4	••••	5	LOOSE	MEDIUM STIFF
- 4 m 13 ft	6	18.4	••••	5	LOOSE	MEDIUM STIFF

L:\Project Notebook\1798401 Mercer island Multi family\field data\wildcat logging spreadsheet.xlsx

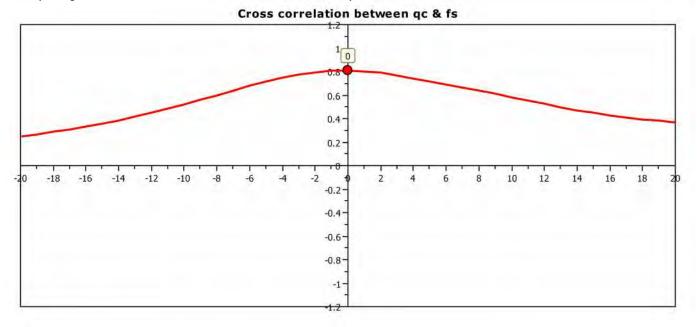
HOLE #:	HC-5

WILDCAT DYNAMIC CONE LOG

Page 2 of 2


	OLE #:		d Multi-Family	LDCAT DYNAMIC CONE L		ROJECT NUMBER:	Page 2 of 2 1798401
	JJLC1.	BLOWS	RESISTANCE	GRAPH OF CONE RESISTANCE		TESTED CO	
DEF	отн	PER 10 cm	KESISTANCE Kg/cm ²	0 50 100 150	N'	NON-COHESIVE	COHESIVE
- DLI	111	7	19.4	••••	5	LOOSE	MEDIUM STIFF
_		, 7	19.4	•••••	5	LOOSE	MEDIUM STIFF
_	14 ft	9	24.9	•••••	7	LOOSE	MEDIUM STIFF
_	1110	8	22.2	•••••	6	LOOSE	MEDIUM STIFF
_		8	22.2	•••••	6	LOOSE	MEDIUM STIFF
_	15 ft	7	19.4	•••••	5	LOOSE	MEDIUM STIFF
_	10 10	9	24.9	•••••	7	LOOSE	MEDIUM STIFF
_		9	24.9	•••••	7	LOOSE	MEDIUM STIFF
_	16 ft	8	22.2	•••••	6	LOOSE	MEDIUM STIFF
- 5 m		10	27.7	•••••	7	LOOSE	MEDIUM STIFF
_		9	22.9	•••••	6	LOOSE	MEDIUM STIFF
-	17 ft	10	25.4	•••••	7	LOOSE	MEDIUM STIFF
-		10	25.4	•••••	7	LOOSE	MEDIUM STIFF
-		12	30.5	•••••	8	LOOSE	MEDIUM STIFF
-	18 ft	11	27.9	•••••	7	LOOSE	MEDIUM STIFF
-		12	30.5	•••••	8	LOOSE	MEDIUM STIFF
-		24	61.0	•••••	17	MEDIUM DENSE	VERY STIFF
-	19 ft	33	83.8	•••••	23	MEDIUM DENSE	VERY STIFF
-		21	53.3	•••••	15	MEDIUM DENSE	STIFF
- 6 m		21	53.3	•••••	15	MEDIUM DENSE	STIFF
-	20 ft	20	46.6	•••••	13	MEDIUM DENSE	STIFF
-		28	65.2	•••••	18	MEDIUM DENSE	VERY STIFF
-		50	116.5	•••••	25+	DENSE	HARD
-	21 ft						
-							
-							
-	22 ft						
-							
-							
- 7 m	23 ft						
-							
-							
-	24 ft						
-							
-	25.0						
-	25 ft						
-							
-	26 ft						
- - 8 m	20 II						
- 0 111							
	27 ft						
E	∠/ Il						
Ē							
_	28 ft						
_	20 It						
_							
_	29 ft						
-							
- 9 m							
L				I ·\Project Notebook\1709	R401 Moreo	r island Multi family∖field data∖wi	Ident logging aproadabaat vlav

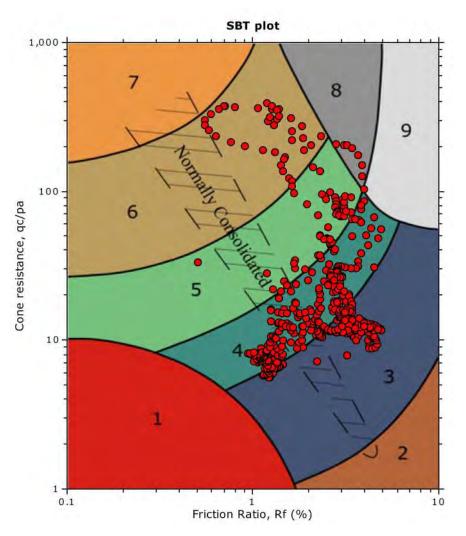
GeoLogismiki

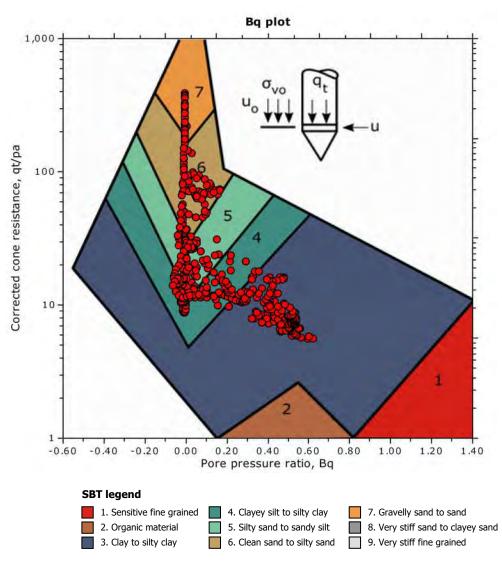

Geotechnical Engineers Merarhias 56 http://www.geologismiki.gr

Project: Location:

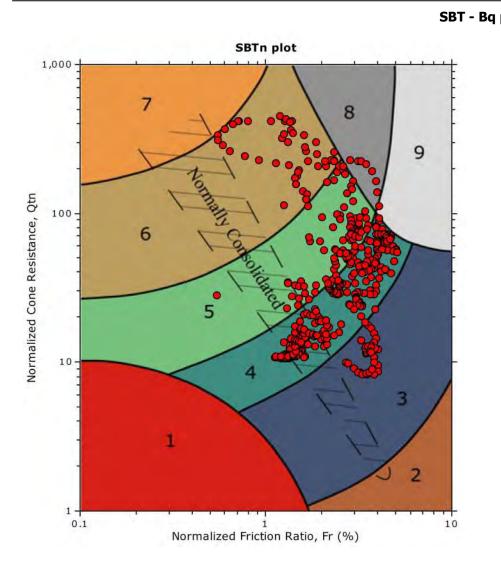
GF

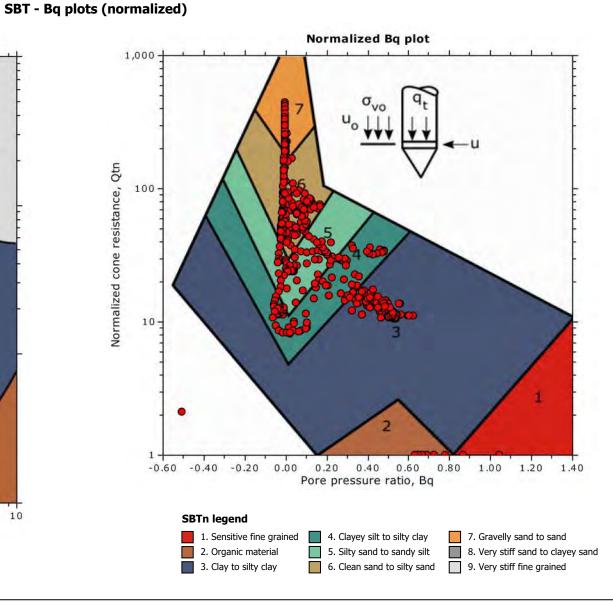
The plot below presents the cross correlation coeficient between the raw qc and fs values (as measured on the field). X axes presents the lag distance (one lag is the distance between two successive CPT measurements).





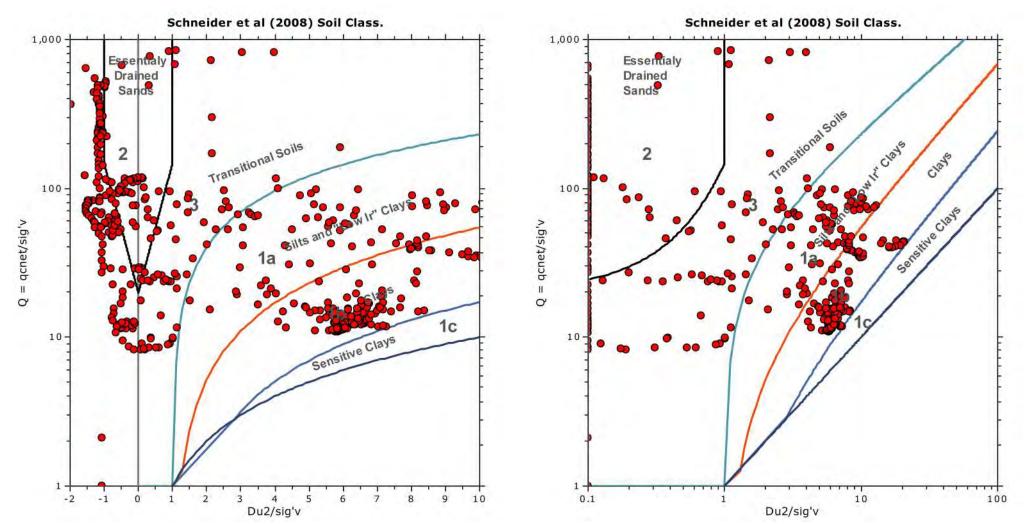
Location:



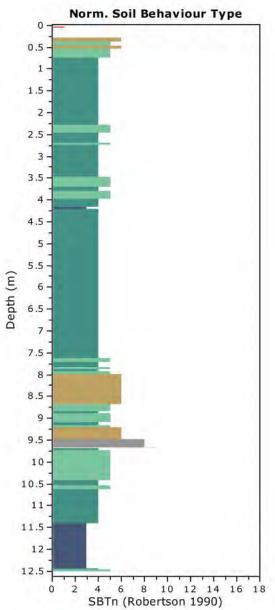


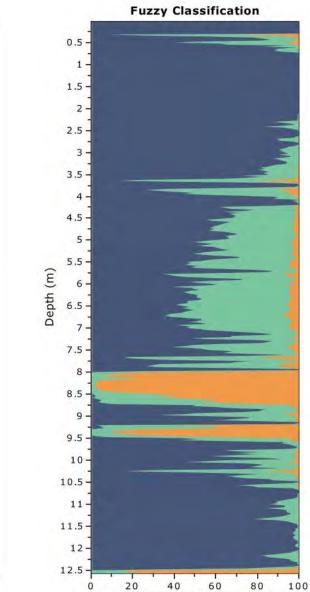
Location:

CPT: Sheet1



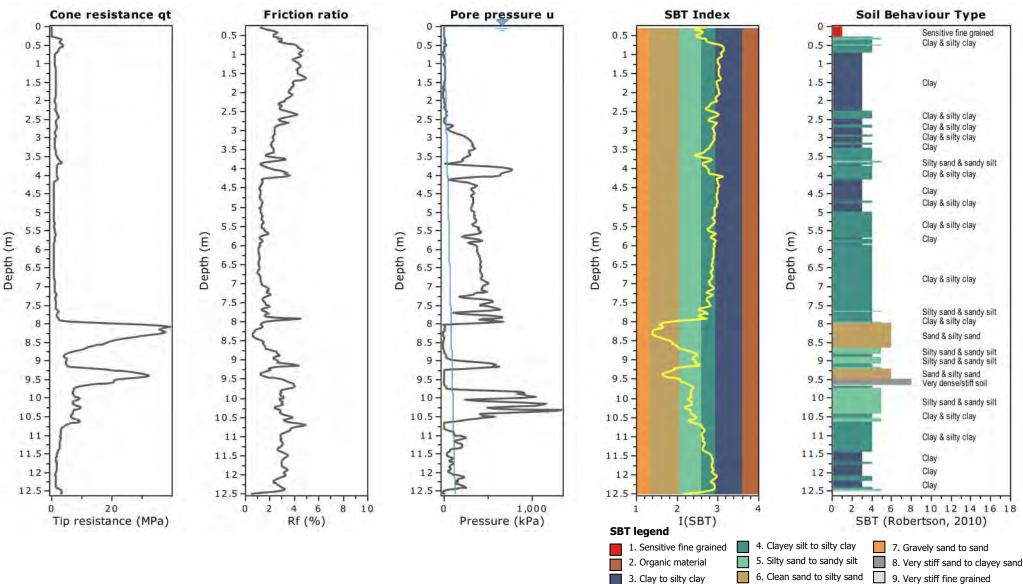
Location:





Location:

GeoLogismiki Geotechnical Engineers Merarhias 56 http://www.geologismiki.gr **CPT: Sheet1** Total depth: 12.57 m, Date: 4/18/2022 Surface Elevation: 0.00 m Coords: X:0.00, Y:0.00 Cone Type: Cone Operator:



Probability of Soil Types (%)

Project:

Location:

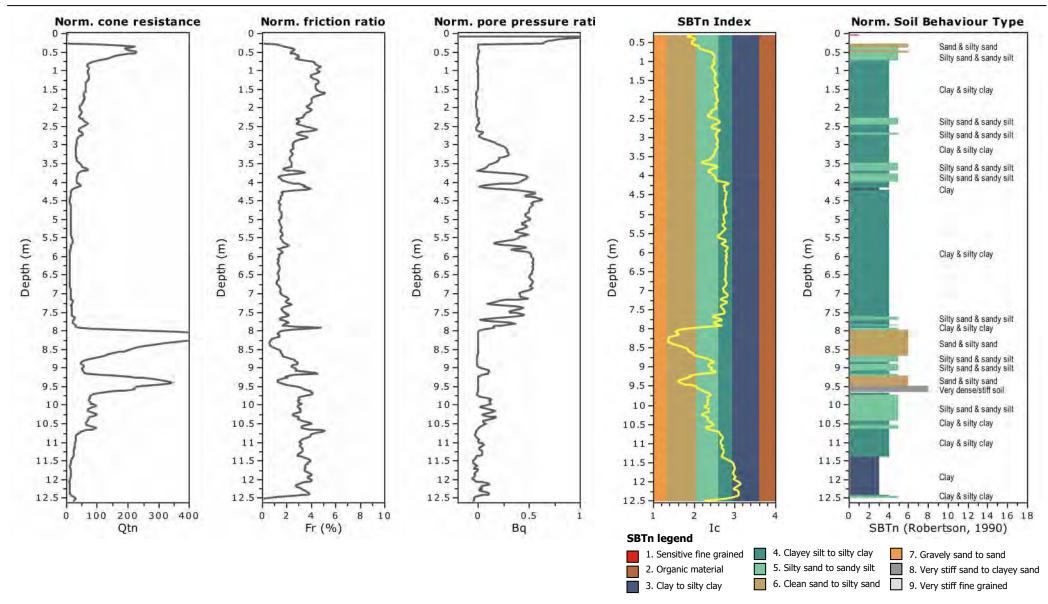
CPT: Sheet1

Cone Type:

Cone Operator:

Surface Elevation: 0.00 m

Coords: X:0.00, Y:0.00


Total depth: 12.57 m, Date: 4/18/2022

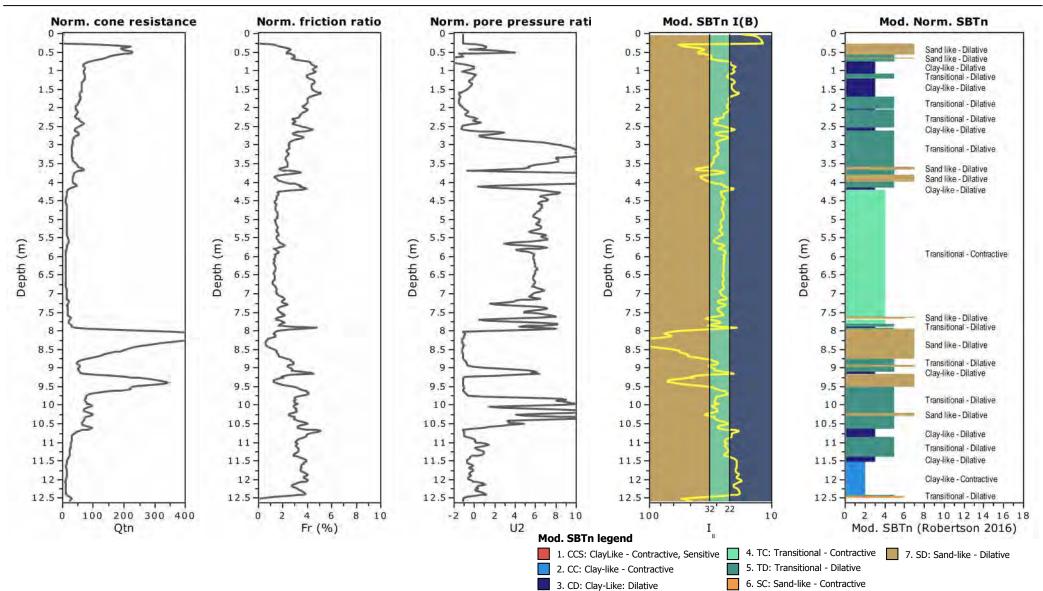
GEOLOGISHIM Geotechnical Software

GeoLogismiki Geotechnical Engineers Merarhias 56 http://www.geologismiki.gr

Project:

Location:

CPeT-IT v.3.5.4.9 - CPTU data presentation & interpretation software - Report created on: 4/18/2022, 12:44:14 PM Project file:


CPT: Sheet1

GEOLOGISHIKI GEOLOGISHIKI Geotechnical Software

GeoLogismiki Geotechnical Engineers Merarhias 56 http://www.geologismiki.gr

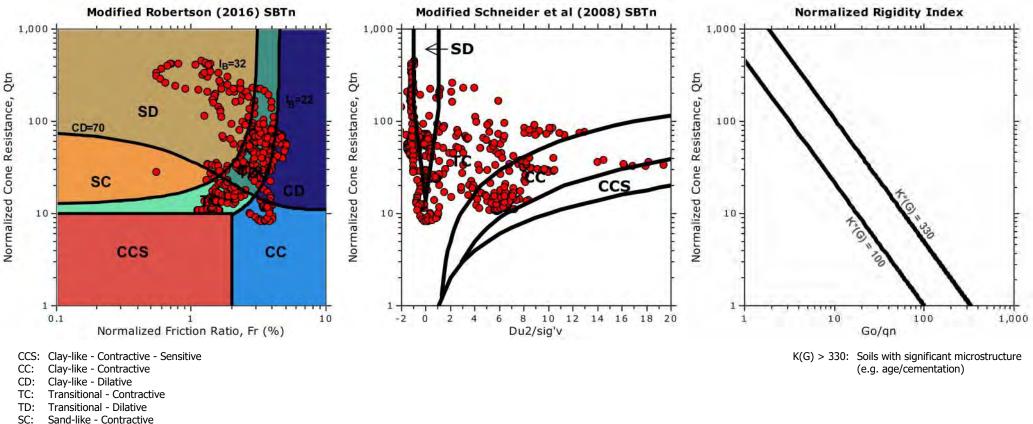
Project:

Location:

CPeT-IT v.3.5.4.9 - CPTU data presentation & interpretation software - Report created on: 4/18/2022, 12:44:14 PM Project file:

CPT: Sheet1

CPT: Sheet1

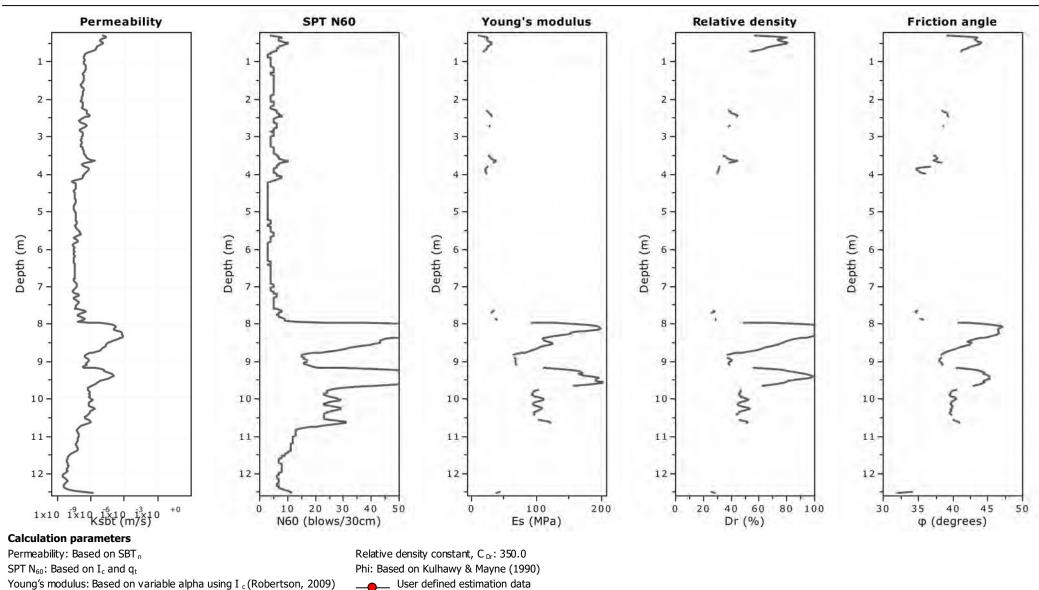

GeoLogismiki Geotechnical Engineers Merarhias 56 Geotechnical Software http://www.geologismiki.gr

Project:

Location:

Total depth: 12.57 m, Date: 4/18/2022 Surface Elevation: 0.00 m Coords: X:0.00, Y:0.00 Cone Type: Cone Operator:

Updated SBTn plots

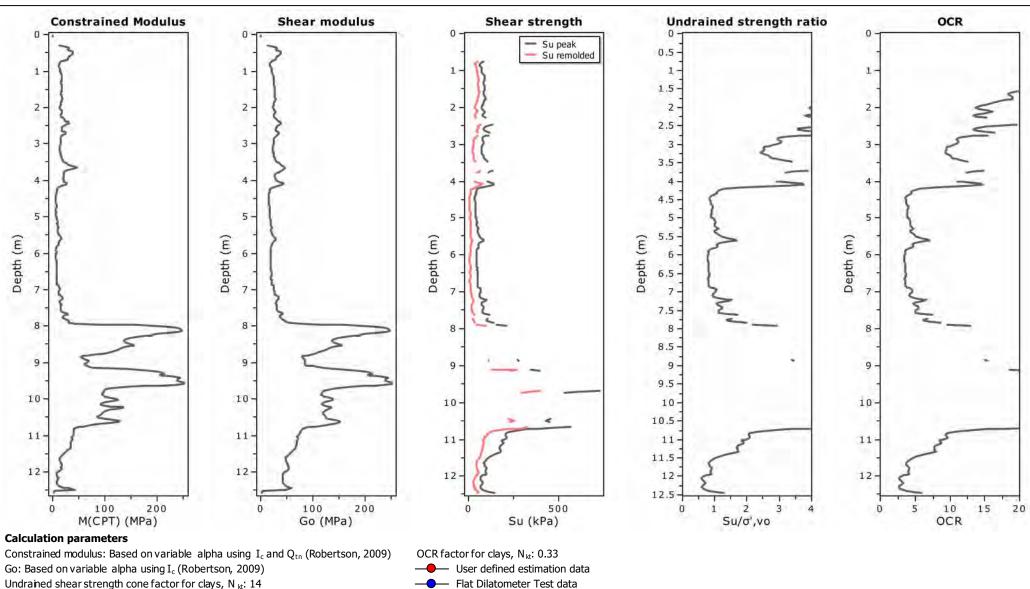

- Sand-like Contractive
- SD: Sand-like - Dilative

GEOLOGISHIKI Geotechnical Software

GeoLogismiki Geotechnical Engineers Merarhias 56 http://www.geologismiki.gr

Project:

Location:



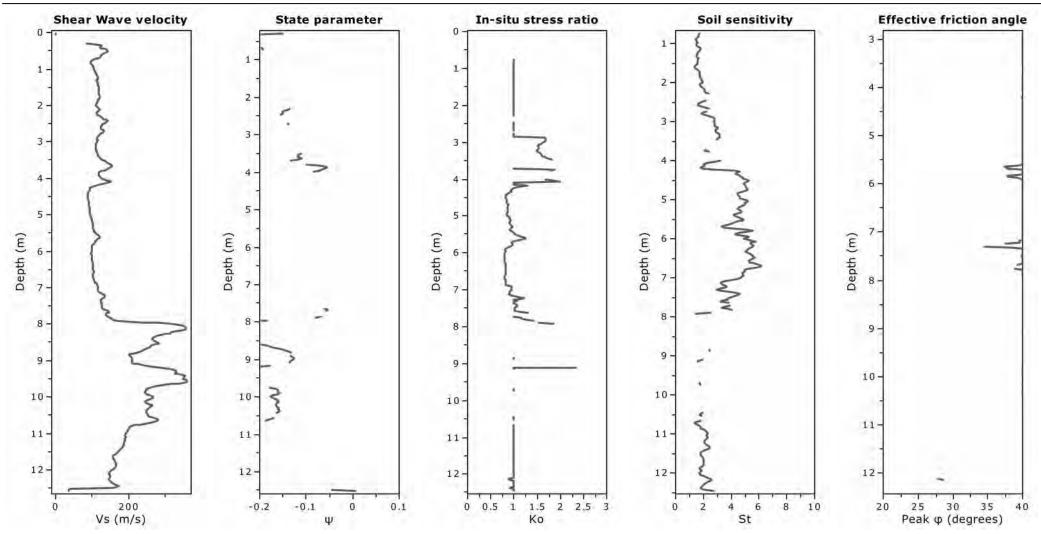
CPT: Sheet1

Project:

Location:

Surface Elevation: 0.00 m

Coords: X:0.00, Y:0.00


Cone Type:

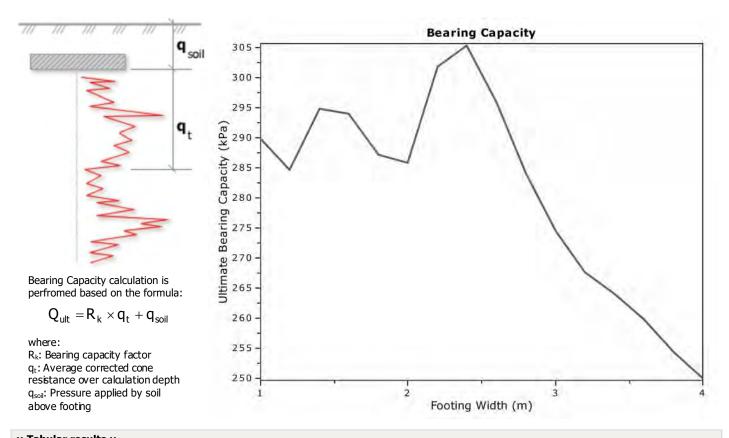
Cone Operator:

Project:

Location:

Calculation parameters

Soil Sensitivity factor, N_s: 7.00


CPT: Sheet1

Project:

Location:

CPT: Sheet1 Total depth: 12.57 m, Date: 4/18/2022 Surface Elevation: 0.00 m Coords: X:0.00, Y:0.00 Cone Type: Cone Operator:

:: Tabula	r results ::							
No	B (m)	Start Depth (m)	End Depth (m)	Ave.q _t (MPa)	R _k	Soil Press. (kPa)	Ult. bearing cap. (kPa)	
1	1.00	0.50	2.00	1.40	0.20	9.50	289.89	
2	1.20	0.50	2.30	1.38	0.20	9.50	284.82	
3	1.40	0.50	2.60	1.43	0.20	9.50	294.99	
4	1.60	0.50	2.90	1.42	0.20	9.50	294.00	
5	1.80	0.50	3.20	1.39	0.20	9.50	287.30	
6	2.00	0.50	3.50	1.38	0.20	9.50	285.92	
7	2.20	0.50	3.80	1.46	0.20	9.50	301.91	
8	2.40	0.50	4.10	1.48	0.20	9.50	305.41	
9	2.60	0.50	4.40	1.43	0.20	9.50	295.95	
10	2.80	0.50	4.70	1.37	0.20	9.50	284.16	
11	3.00	0.50	5.00	1.33	0.20	9.50	274.64	
12	3.20	0.50	5.30	1.29	0.20	9.50	267.79	
13	3.40	0.50	5.60	1.27	0.20	9.50	264.04	
14	3.60	0.50	5.90	1.25	0.20	9.50	259.91	
15	3.80	0.50	6.20	1.22	0.20	9.50	254.45	
16	4.00	0.50	6.50	1.20	0.20	9.50	250.05	

CPeT-IT v.3.5.4.9 - CPTU data presentation & interpretation software - Report created on: 4/18/2022, 12:44:15 PM Project file:

Presented below is a list of formulas used for the estimation of various soil properties. The formulas are presented in SI unit system and assume that all components are expressed in the same units.

:: Unit Weight, g (kN/m³) ::

$$g = g_{w} \cdot \left(0.27 \cdot \log(R_{f}) + 0.36 \cdot \log(\frac{q_{t}}{p_{a}}) + 1.236 \right)$$

where $g_w =$ water unit weight

:: Permeability, k (m/s) ::

 $I_{\,c}$ < 3.27 and $I_{\,c}$ > 1.00 then $k = 10^{\,0.952 \cdot 3.04 \cdot I_{c}}$

$$I_c \leq$$
 4.00 and $I_c >$ 3.27 then k = 10^{-4.52-1.37 \cdot I_c}

:: N_{SPT} (blows per 30 cm) ::

$$\begin{split} N_{60} = & \left(\frac{q_c}{P_a} \right) \cdot \frac{1}{10^{1.1268 - 0.2817 \cdot I_c}} \\ N_{1(60)} = & Q_{tn} \cdot \frac{1}{10^{1.1268 - 0.2817 \cdot I_c}} \end{split}$$

:: Young's Modulus, Es (MPa) ::

 $\begin{array}{l} (q_t - \sigma_v) \cdot 0.015 \cdot 10^{0.55 \cdot I_c + 1.68} \\ (\text{applicable only to } I_c < I_{c_cutoff}) \end{array}$

:: Relative Density, Dr (%) ::

 $100 \cdot \sqrt{\frac{Q_{tn}}{k_{DR}}}$

(applicable only to SBT _: 5, 6, 7 and 8 or $I_c < I_{c_{cutoff}}$)

:: State Parameter, ψ ::

 $\psi = 0.56 - 0.33 \cdot log(Q_{tn,cs})$

:: Drained Friction Angle, φ (°) ::

тт ·----

(applicable only to SBT n: 5, 6, 7 and 8 or $I_c < I_{c_cutoff}$)

:: 1-D constrained modulus, M (MPa) ::

 $\begin{array}{l} \mbox{If } I_c > 2.20 \\ a = 14 \mbox{ for } Q_{tn} > 14 \\ a = Q_{tn} \mbox{ for } Q_{tn} \leq 14 \\ M_{CPT} = a^{} (q_t - \sigma_v) \end{array}$

If $I_c \ge 2.20$

:: Small strain shear Modulus, Go (MPa) ::

$$G_0 = (q_t - \sigma_v) \cdot 0.0188 \cdot 10^{0.55 \cdot I_c + 1.68}$$

:: Shear Wave Velocity, Vs (m/s) ::

$$V_{s} = \left(\frac{G_{0}}{\rho}\right)^{0.50}$$

:: Undrained peak shear strength, Su (kPa) ::

 $N_{kt} = 10.50 + 7 \cdot \log(F_r)$ or user defined = $(a_* - \sigma_v)$

$$S_u = \frac{(q_t - \sigma_v)}{N_{kt}}$$

(applicable only to SBT n: 1, 2, 3, 4 and 9 or $I_c > I_{c_cutoff}$)

:: Remolded undrained shear strength, Su(rem) (kPa) ::

$$S_{u(rem)} = f_s$$
 (applicable only to SBT_n: 1, 2, 3, 4 and 9
or $I_c > I_c$ _{cutoff})

:: Overconsolidation Ratio, OCR ::

$$k_{OCR} = \left[\frac{Q_{tn}^{0.20}}{0.25 \cdot (10.50 \cdot +7 \cdot \log(F_r))}\right]^{1.25} \text{ or user defined}$$
$$OCR = k_{OCR} \cdot Q_{tn}$$

(applicable only to SBT _: 1, 2, 3, 4 and 9 or I _c > I _c_utoff)

:: In situ Stress Ratio, Ko ::

 $K_{o} = (1 - \sin \varphi') \cdot OCR^{\sin \varphi'}$

(applicable only to SBT _: 1, 2, 3, 4 and 9 or I _c > I _c_utoff)

:: Soil Sensitivity, S $_{\rm t}$::

$$S_t = \frac{N_S}{F_r}$$

...

(applicable only to SBT _: 1, 2, 3, 4 and 9 or I _c > I _c_cutoff)

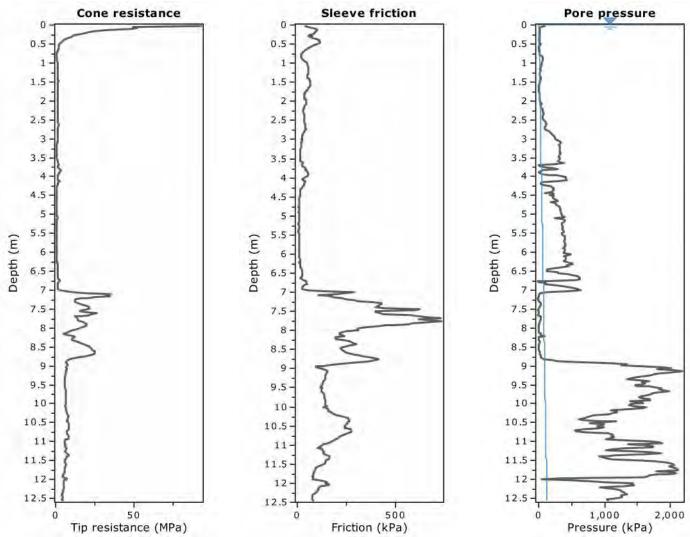
:: Peak Friction Angle, φ' (°) ::

 $\phi' = 29.5^{\circ} \cdot B_q^{0.121} \cdot (0.256 + 0.336 \cdot B_q + \log Q_t)$ (applicable for 0.10<B_q<1.00)

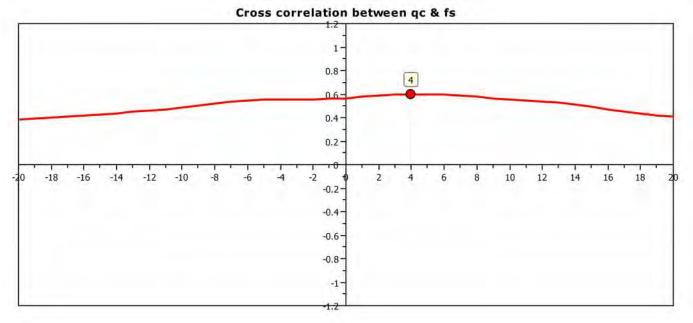
References

• Robertson, P.K., Cabal K.L., Guide to Cone Penetration Testing for Geotechnical Engineering, Gregg Drilling & Testing, Inc., 5 th Edition, November 2012

• Robertson, P.K., Interpretation of Cone Penetration Tests - a unified approach., Can. Geotech. J. 46(11): 1337–1355 (2009)


• N Barounis, J Philpot, Estimation of in-situ water content, void ratio, dry unit weight and porosity using CPT for saturated sands, Proc. 20th NZGS Geotechnical Symposium

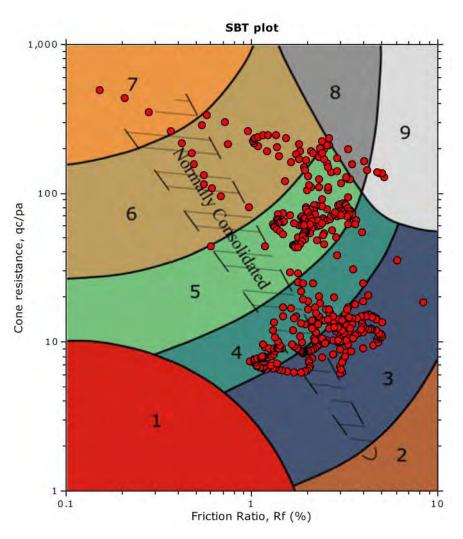
GeoLogismiki

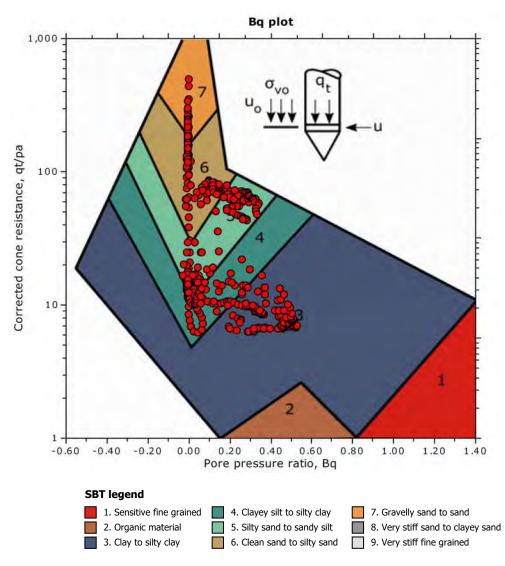

Geotechnical Engineers Merarhias 56 http://www.geologismiki.gr

Project: Location:

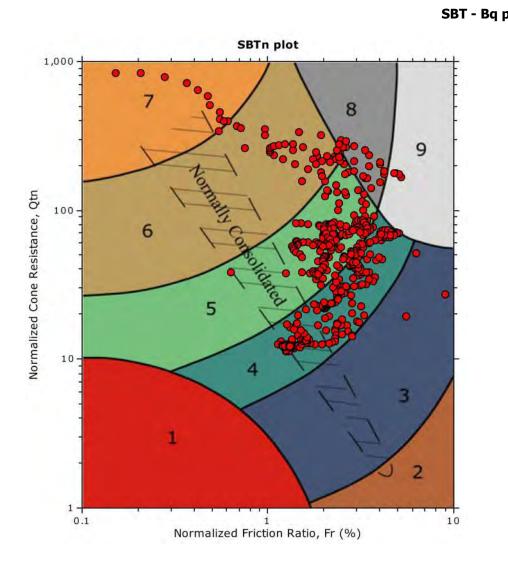
GF

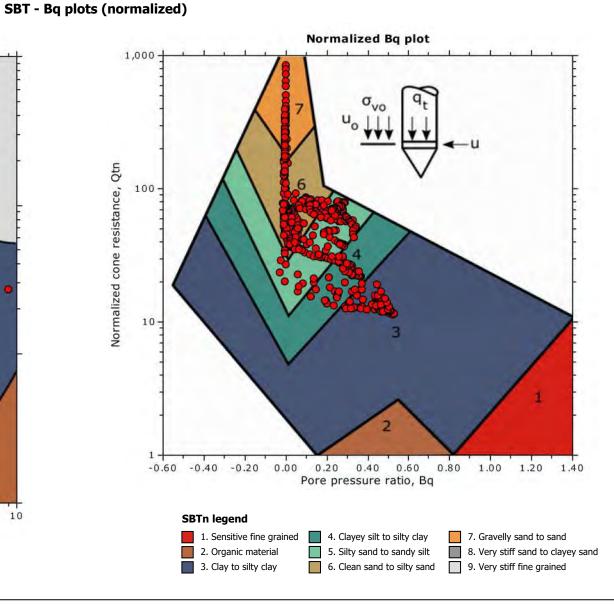
The plot below presents the cross correlation coeficient between the raw qc and fs values (as measured on the field). X axes presents the lag distance (one lag is the distance between two successive CPT measurements).





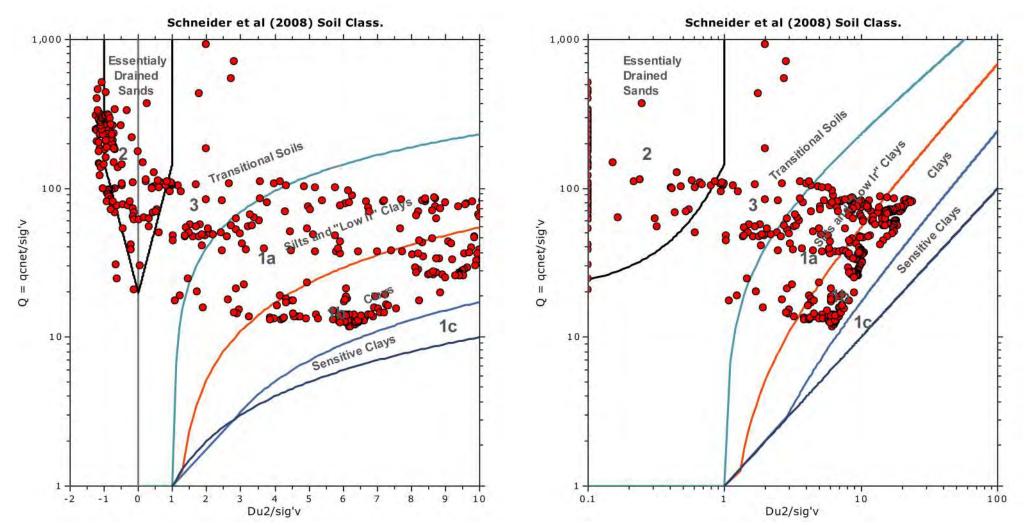
Location:





Location:

CPT: Sheet1



Location:

CPT: Sheet1

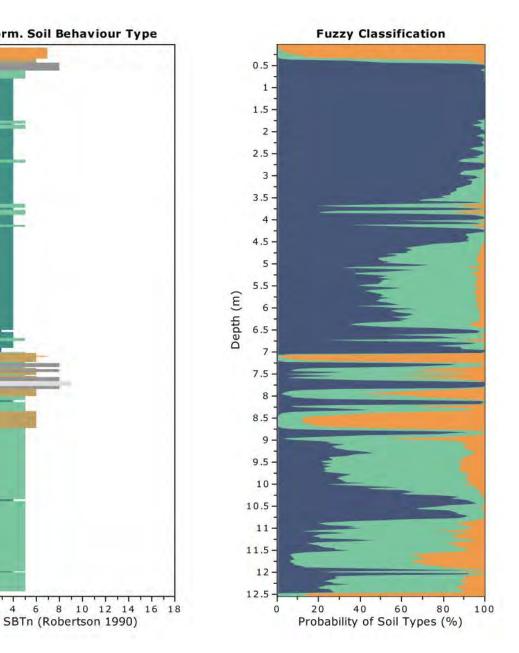
11.5

12.5

12

0

2


Project:

Location:

GeoLogismiki **Geotechnical Engineers** Merarhias 56 http://www.geologismiki.gr

CPT: Sheet1 Total depth: 12.55 m, Date: 4/18/2022 Surface Elevation: 0.00 m Coords: X:0.00, Y:0.00 Cone Type: Cone Operator:

Norm. Soil Behaviour Type 0 0.5 1 -1.5 2 2.5 3 3.5 4 4.5 5 5.5 Depth (m) 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11

CPeT-IT v.3.5.4.9 - CPTU data presentation & interpretation software - Report created on: 4/18/2022, 1:04:25 PM Project file:

GEOLOGISTIKA Geotechnical Software

GeoLogismiki Geotechnical Engineers Merarhias 56 http://www.geologismiki.gr

Project:

Location:

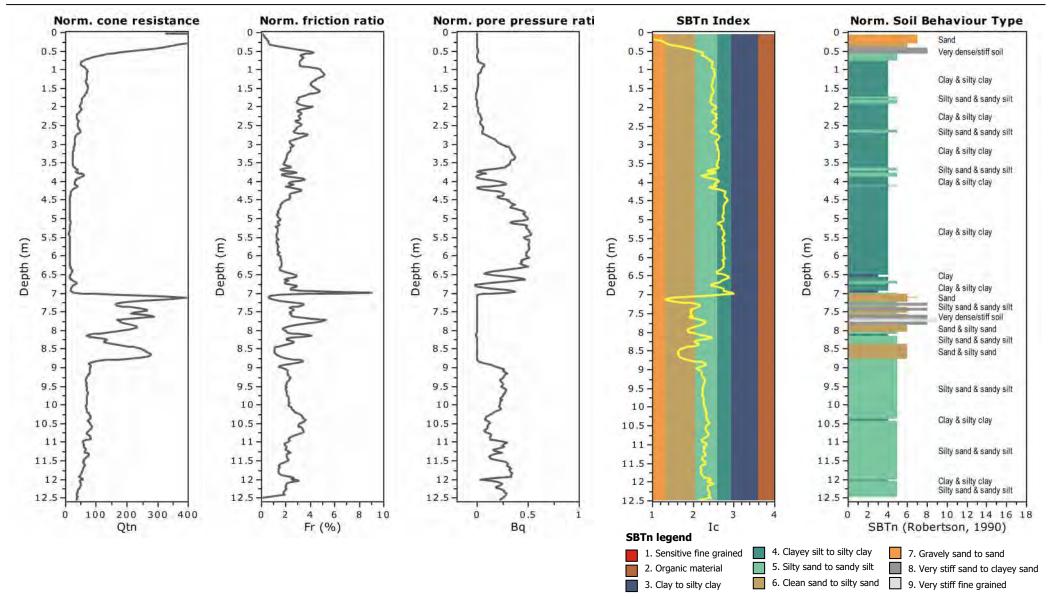
CPT: Sheet1

Cone Type:

Cone Operator:

Surface Elevation: 0.00 m

Coords: X:0.00, Y:0.00

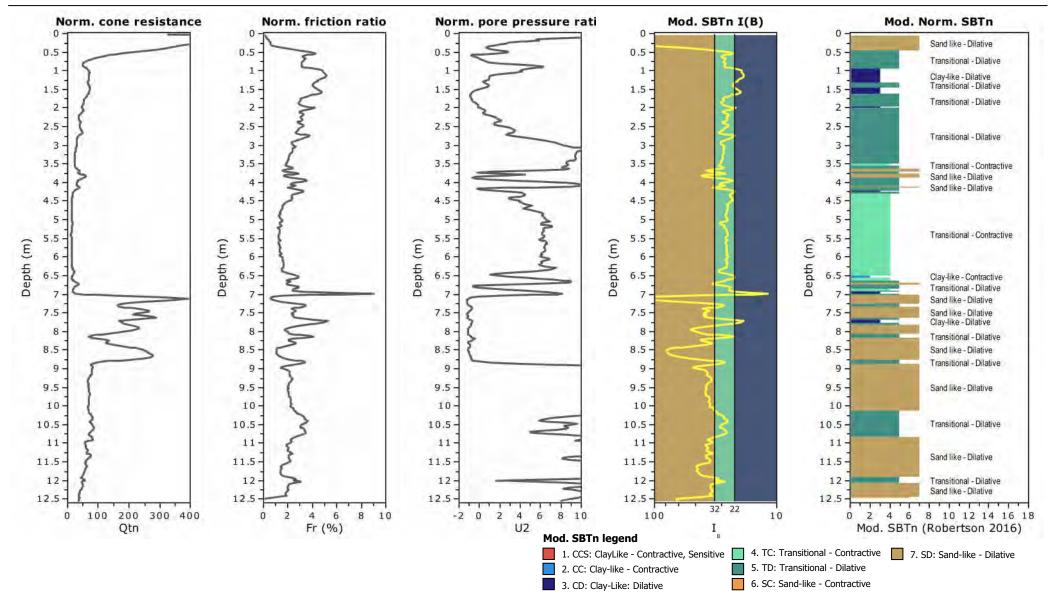

Total depth: 12.55 m, Date: 4/18/2022

GEOLOGISHIKI Geotechnical Software

GeoLogismiki Geotechnical Engineers Merarhias 56 http://www.geologismiki.gr

Project:

Location:

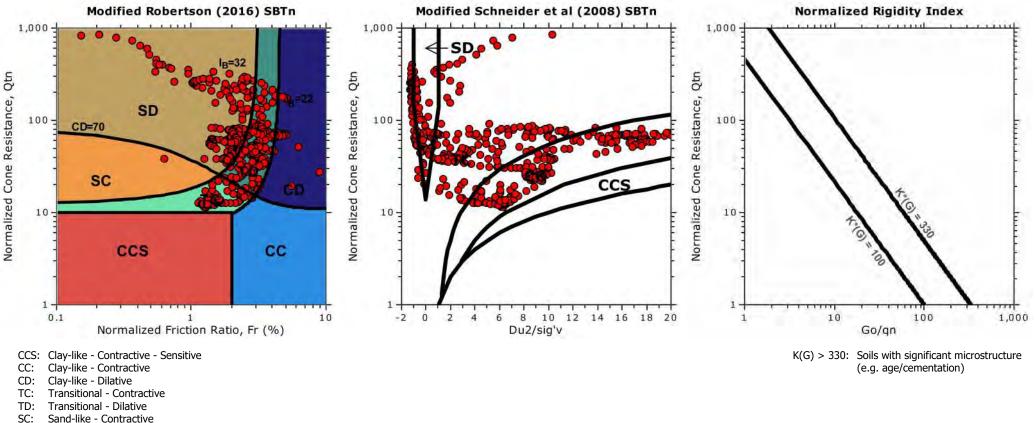


CPT: Sheet1

Project:

Location:

CPT: Sheet1

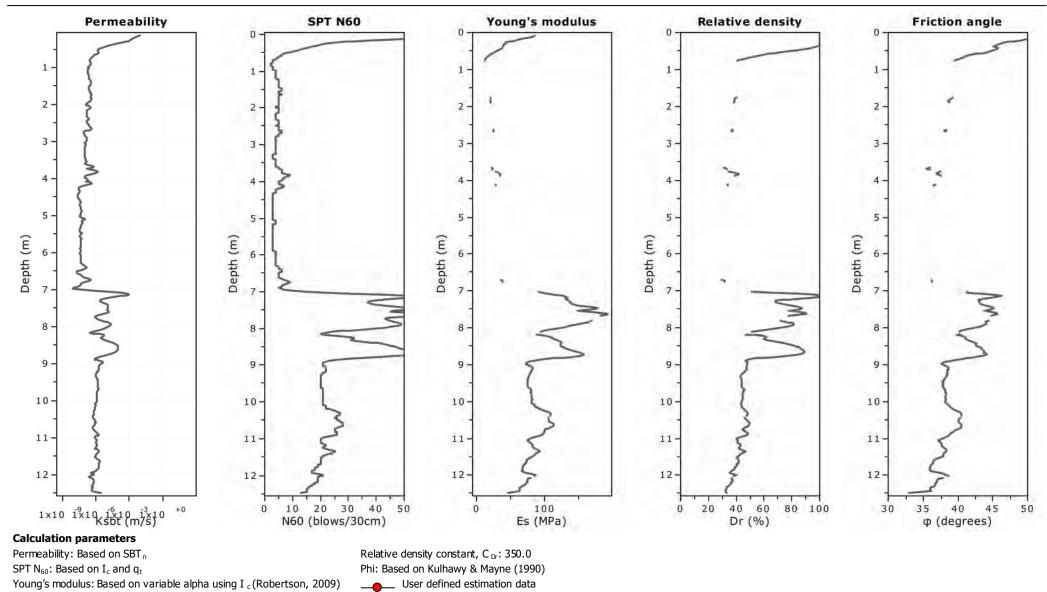


Project:

Location:

Total depth: 12.55 m, Date: 4/18/2022 Surface Elevation: 0.00 m Coords: X:0.00, Y:0.00 Cone Type: Cone Operator:

Updated SBTn plots

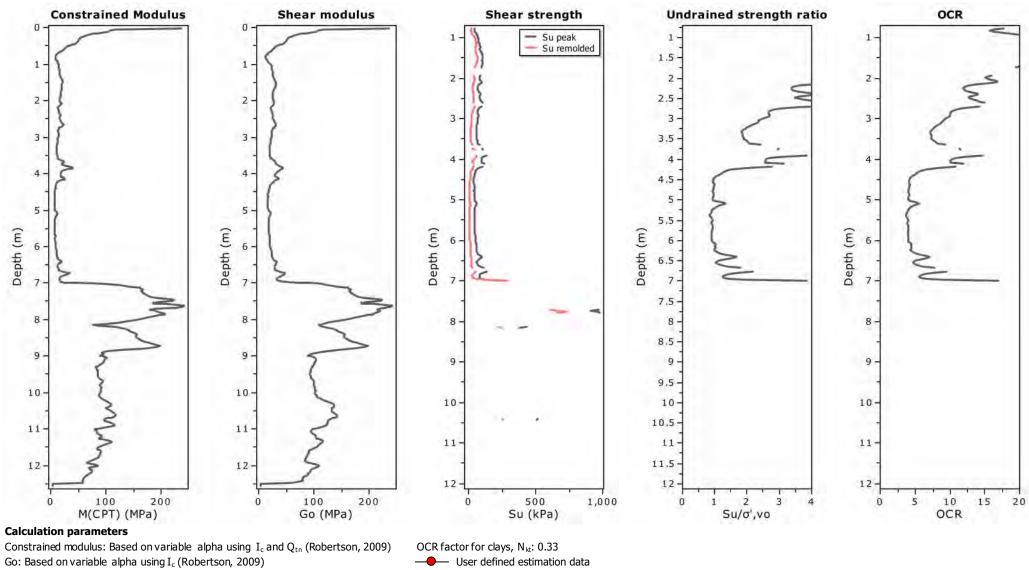

SD: Sand-like - Dilative

GEOLOGISUIXA Geotechnical Software

GeoLogismiki Geotechnical Engineers Merarhias 56 http://www.geologismiki.gr

Project:

Location:


CPT: Sheet1

GEOLOGISHIKI Geotechnical Software

GeoLogismiki Geotechnical Engineers Merarhias 56 http://www.geologismiki.gr

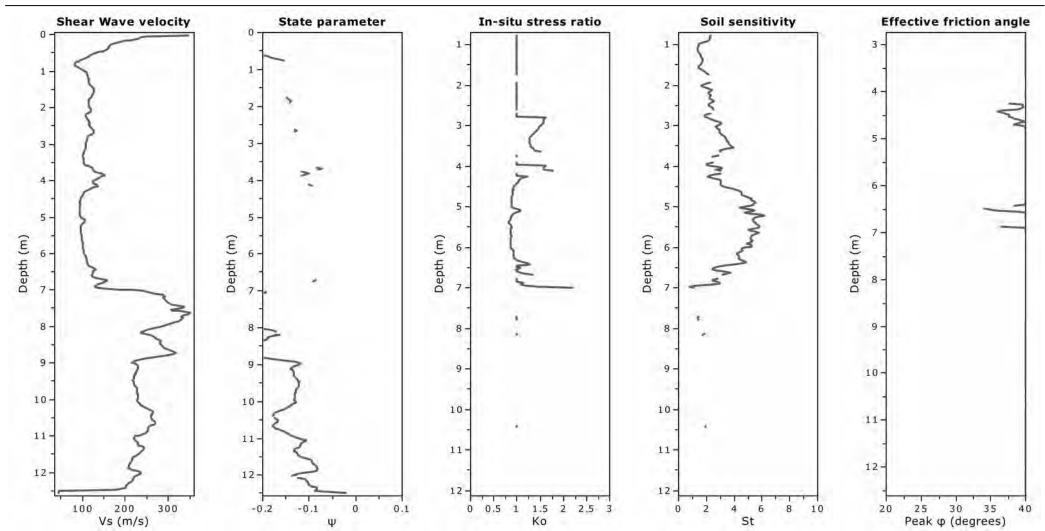
Project:

Location:

Flat Dilatometer Test data

-

Undrained shear strength cone factor for clays, N $_{\rm kt}$: 14


CPT: Sheet1

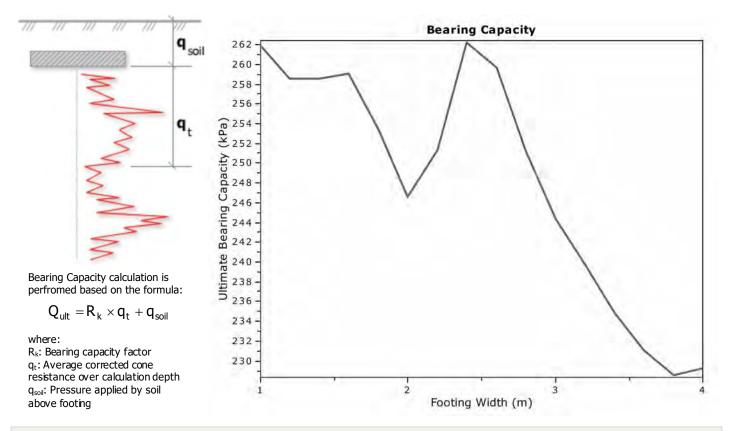
GEOLOGISHIKI GEOLOGISHIKI Geotechnical Software

GeoLogismiki Geotechnical Engineers Merarhias 56 http://www.geologismiki.gr

Project:

Location:

Calculation parameters


Soil Sensitivity factor, N_s: 7.00

CPT: Sheet1

Project:

Location:

:: Tabular results ::								
No	В (m)	Start Depth (m)	End Depth (m)	Ave.q _t (MPa)	R _k	Soil Press. (kPa)	Ult. bearing cap. (kPa)	
1	1.00	0.50	2.00	1.26	0.20	9.50	261.92	
2	1.20	0.50	2.30	1.25	0.20	9.50	258.60	
3	1.40	0.50	2.60	1.25	0.20	9.50	258.58	
4	1.60	0.50	2.90	1.25	0.20	9.50	259.03	
5	1.80	0.50	3.20	1.22	0.20	9.50	253.35	
6	2.00	0.50	3.50	1.19	0.20	9.50	246.59	
7	2.20	0.50	3.80	1.21	0.20	9.50	251.38	
8	2.40	0.50	4.10	1.26	0.20	9.50	262.21	
9	2.60	0.50	4.40	1.25	0.20	9.50	259.70	
10	2.80	0.50	4.70	1.21	0.20	9.50	251.25	
11	3.00	0.50	5.00	1.17	0.20	9.50	244.33	
12	3.20	0.50	5.30	1.15	0.20	9.50	239.76	
13	3.40	0.50	5.60	1.13	0.20	9.50	234.83	
14	3.60	0.50	5.90	1.11	0.20	9.50	231.05	
15	3.80	0.50	6.20	1.10	0.20	9.50	228.54	
16	4.00	0.50	6.50	1.10	0.20	9.50	229.21	

Presented below is a list of formulas used for the estimation of various soil properties. The formulas are presented in SI unit system and assume that all components are expressed in the same units.

:: Unit Weight, g (kN/m³) ::

$$g = g_{w} \cdot \left(0.27 \cdot \log(R_{f}) + 0.36 \cdot \log(\frac{q_{t}}{p_{a}}) + 1.236 \right)$$

where g_w = water unit weight

:: Permeability, k (m/s) ::

 $I_{\,c}$ < 3.27 and $I_{\,c}$ > 1.00 then $k = 10^{\,0.952 \cdot 3.04 \cdot I_{c}}$

$$I_c \leq$$
 4.00 and $I_c >$ 3.27 then k = 10^{-4.52-1.37 \cdot I_c}

:: N_{SPT} (blows per 30 cm) ::

$$\begin{split} N_{60} = & \left(\frac{q_c}{P_a} \right) \cdot \frac{1}{10^{1.1268 - 0.2817 \cdot I_c}} \\ N_{1(60)} = & Q_{tn} \cdot \frac{1}{10^{1.1268 - 0.2817 \cdot I_c}} \end{split}$$

:: Young's Modulus, Es (MPa) ::

 $\begin{array}{l} (q_t - \sigma_v) \cdot 0.015 \cdot 10^{0.55 \cdot I_c + 1.68} \\ (\text{applicable only to } I_c < I_{c_cutoff}) \end{array}$

:: Relative Density, Dr (%) ::

 $100\cdot\sqrt{\frac{Q_{tn}}{k_{DR}}}$

(applicable only to SBT _: 5, 6, 7 and 8 or $I_c < I_{c_{autoff}}$)

:: State Parameter, ψ ::

 $\psi = 0.56 - 0.33 \cdot log(Q_{tn,cs})$

:: Drained Friction Angle, φ (°) ::

(applicable only to SBT n: 5, 6, 7 and 8 or $I_c < I_{c_cutoff}$)

:: 1-D constrained modulus, M (MPa) ::

 $\begin{array}{l} \mbox{If } I_c > 2.20 \\ a = 14 \mbox{ for } Q_{tn} > 14 \\ a = Q_{tn} \mbox{ for } Q_{tn} \leq 14 \\ M_{CPT} = a^{} (q_t - \sigma_v) \end{array}$

If $I_c \ge 2.20$

:: Small strain shear Modulus, Go (MPa) ::

$$G_0 = (q_t - \sigma_v) \cdot 0.0188 \cdot 10^{0.55 \cdot I_c + 1.68}$$

:: Shear Wave Velocity, Vs (m/s) ::

$$V_{s} = \left(\frac{G_{0}}{\rho}\right)^{0.50}$$

:: Undrained peak shear strength, Su (kPa) ::

 $N_{kt} = 10.50 + 7 \cdot \log(F_r)$ or user defined

$$S_u = \frac{(q_t - \sigma_v)}{N_{kt}}$$

(applicable only to SBT $_{\rm n}$: 1, 2, 3, 4 and 9 or I $_{\rm c}$ > I $_{\rm c_cutoff}$)

:: Remolded undrained shear strength, Su(rem) (kPa) ::

$$S_{u(rem)} = f_s$$
 (applicable only to SBT_n: 1, 2, 3, 4 and 9
or $I_c > I_c$ _{cutoff})

:: Overconsolidation Ratio, OCR ::

$$k_{OCR} = \left[\frac{Q_{tn}^{0.20}}{0.25 \cdot (10.50 \cdot +7 \cdot \log(F_r))}\right]^{1.25} \text{ or user defined}$$
$$OCR = k_{OCR} \cdot Q_{tn}$$

(applicable only to SBT _: 1, 2, 3, 4 and 9 or I _c > I _c_utoff)

:: In situ Stress Ratio, Ko ::

 $K_{o} = (1 - \sin \varphi') \cdot OCR^{\sin \varphi'}$

(applicable only to SBT _: 1, 2, 3, 4 and 9 or I _c > I _c_utoff)

:: Soil Sensitivity, S $_{\rm t}$::

$$S_t = \frac{N_S}{F_r}$$

...

(applicable only to SBT _: 1, 2, 3, 4 and 9 or I _c > I _c_utoff)

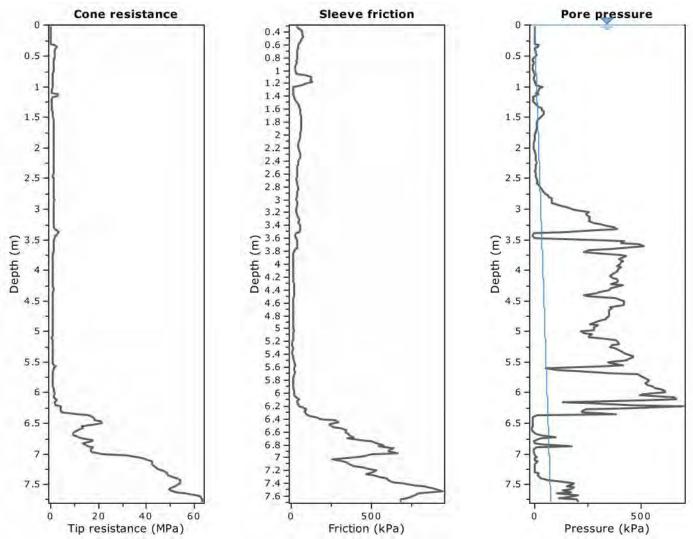
:: Peak Friction Angle, φ' (°) ::

 $\phi' = 29.5^{\circ} \cdot B_q^{0.121} \cdot (0.256 + 0.336 \cdot B_q + \log Q_t)$ (applicable for 0.10<B_q<1.00)

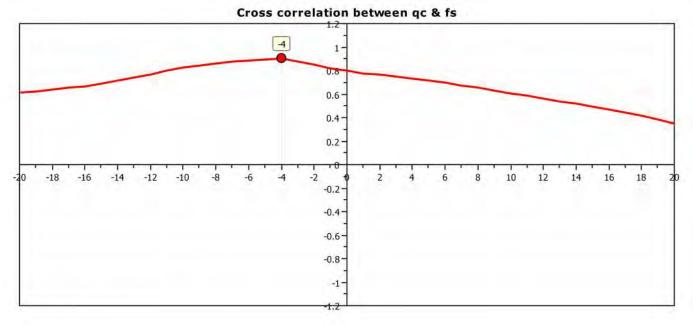
References

• Robertson, P.K., Cabal K.L., Guide to Cone Penetration Testing for Geotechnical Engineering, Gregg Drilling & Testing, Inc., 5 th Edition, November 2012

• Robertson, P.K., Interpretation of Cone Penetration Tests - a unified approach., Can. Geotech. J. 46(11): 1337–1355 (2009)


• N Barounis, J Philpot, Estimation of in-situ water content, void ratio, dry unit weight and porosity using CPT for saturated sands, Proc. 20th NZGS Geotechnical Symposium

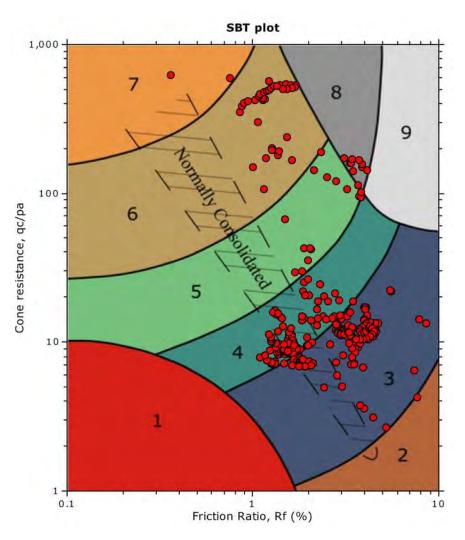
GeoLogismiki

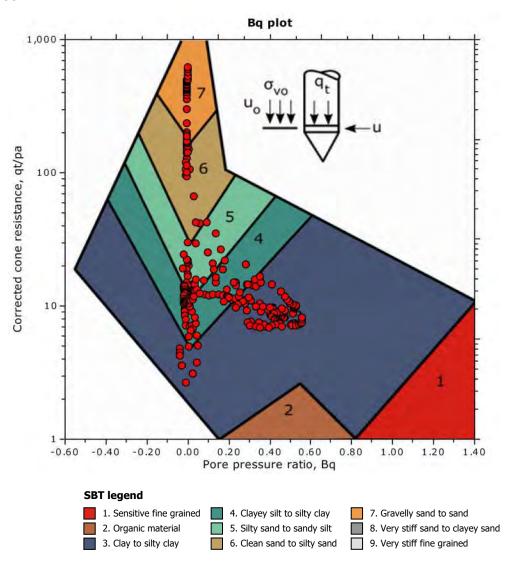

Geotechnical Engineers Merarhias 56 http://www.geologismiki.gr

Project: Location:

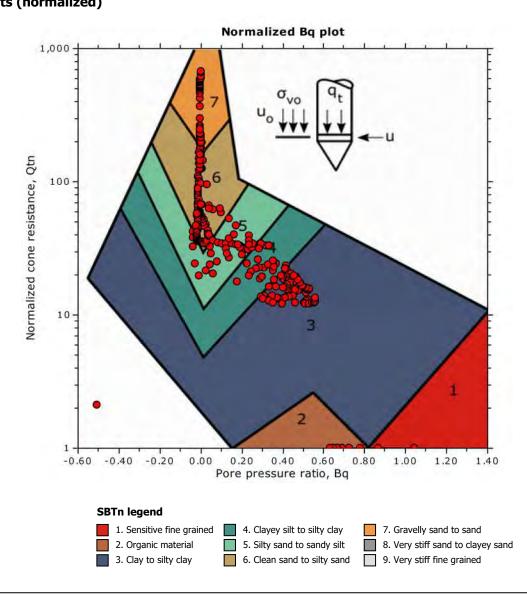
GF

The plot below presents the cross correlation coeficient between the raw qc and fs values (as measured on the field). X axes presents the lag distance (one lag is the distance between two successive CPT measurements).



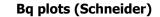


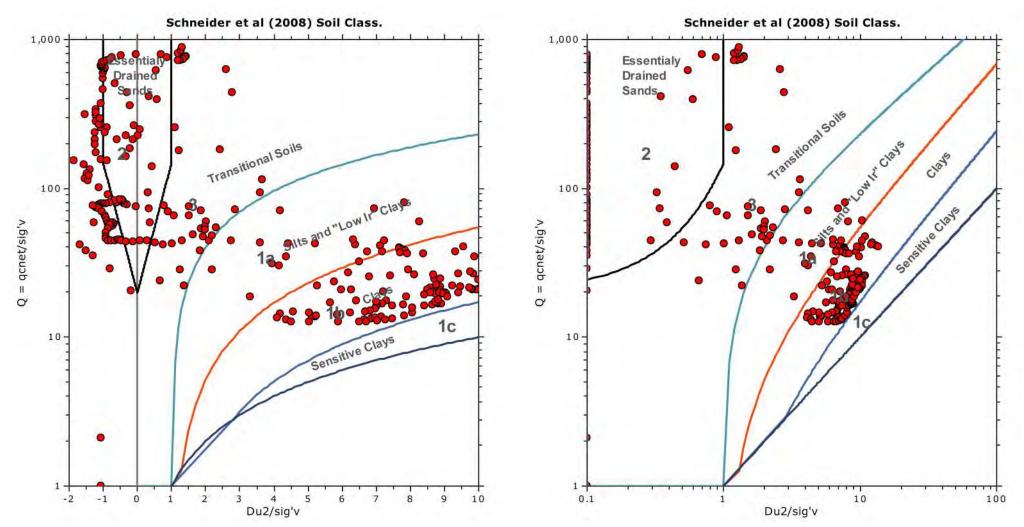
Location:



Location:

CPT: Sheet1

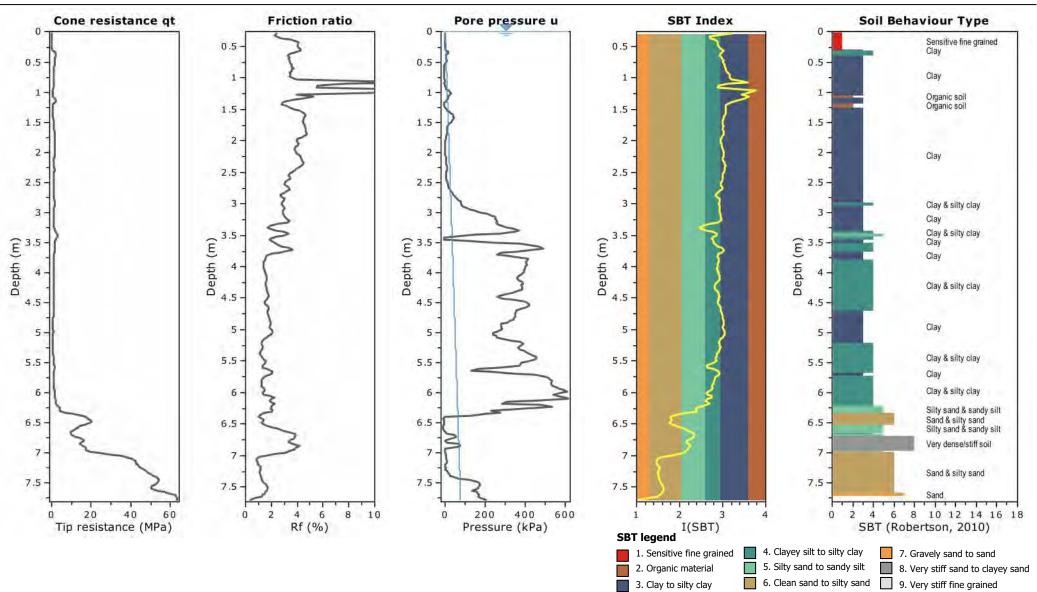




Location:

Location:

GeoLogismiki Geotechnical Engineers Merarhias 56 http://www.geologismiki.gr CPT: Sheet1 Total depth: 7.78 m, Date: 4/18/2022


Surface Elevation: 0.00 m Coords: X:0.00, Y:0.00 Cone Type: Cone Operator:

Fuzzy Classification Norm. Soil Behaviour Type 0 0.2 0.2 0.4 0.6 0.8-0.8 1 -1 1.2 -1.2 -1.4 -1.4 -1.6 -1.6 1.8 -1.8 2 -2 2.2 2.2 -2.4 2.4 2.6 -2.6 2.8 2.8 3 3 3.2 3.2 -3.4 3.4 -Depth (m) 3.6 -Depth (m) 3.8 -4 4.2 4.4 4.4 4.6 4.6 4.8 4.8 5 5 -5.2 5.2 -5.4 5.4 -5.6 -5.6 5.8 5.8 6 6.2 6.4 6.4 -6.6 6.6 -6.8 6.8 -7 7-7.2 -7.2-7.4 7.4 -7.6 7.6 -7.8 +4 6 8 10 12 14 SBTn (Robertson 1990) Ó 2 16 18 0 20 40 60 80 100 Probability of Soil Types (%)

Project:

Location:

CPT: Sheet1

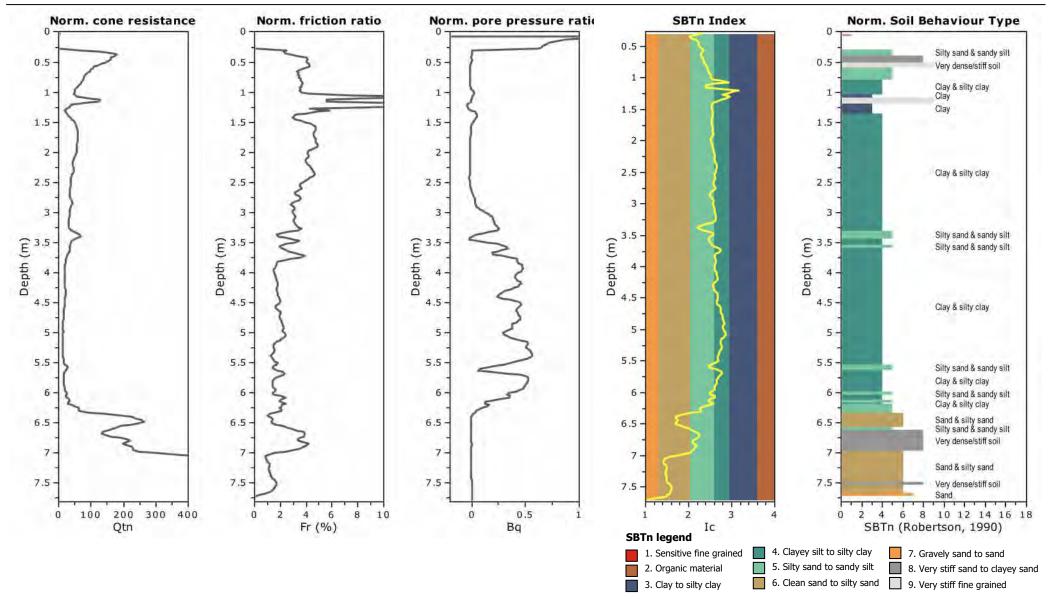
Cone Type:

Cone Operator:

Surface Elevation: 0.00 m

Coords: X:0.00, Y:0.00

Total depth: 7.78 m, Date: 4/18/2022


6

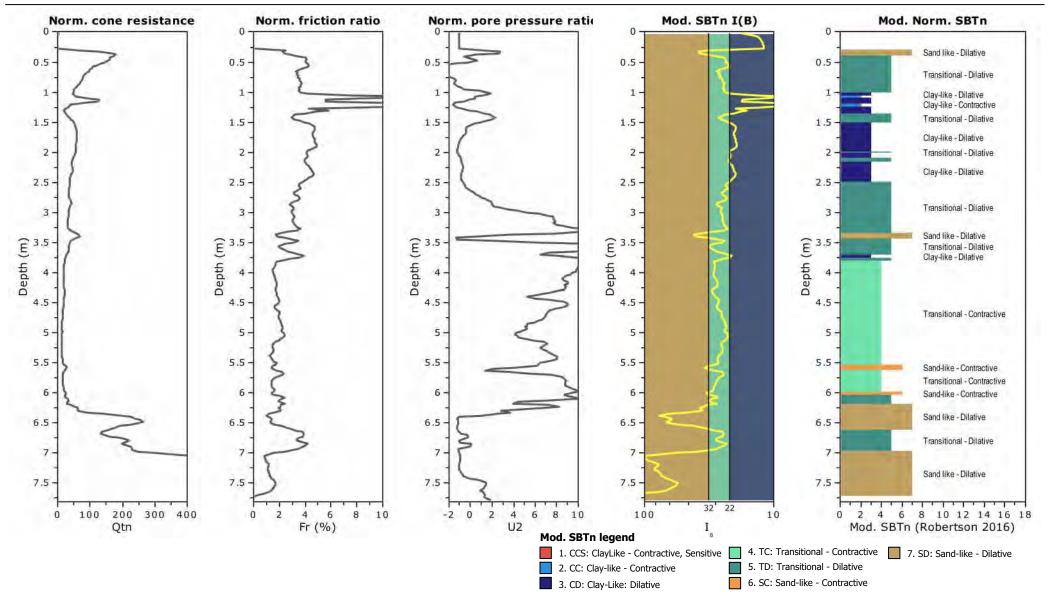
GEOLOGISHIKI GEOLOGISHIKI Geotechnical Software

GeoLogismiki Geotechnical Engineers Merarhias 56 http://www.geologismiki.gr

Project:

Location:

CPeT-IT v.3.5.4.9 - CPTU data presentation & interpretation software - Report created on: 4/18/2022, 2:06:55 PM Project file:


CPT: Sheet1

GEOLOGISHI// Geo Geotechnical Software

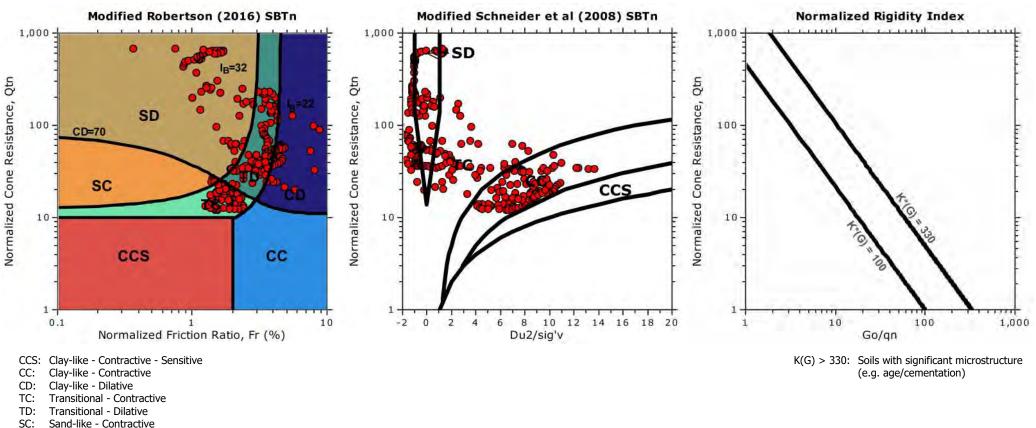
GeoLogismiki Geotechnical Engineers Merarhias 56 http://www.geologismiki.gr

Project:

Location:

CPT: Sheet1

CPT: Sheet1

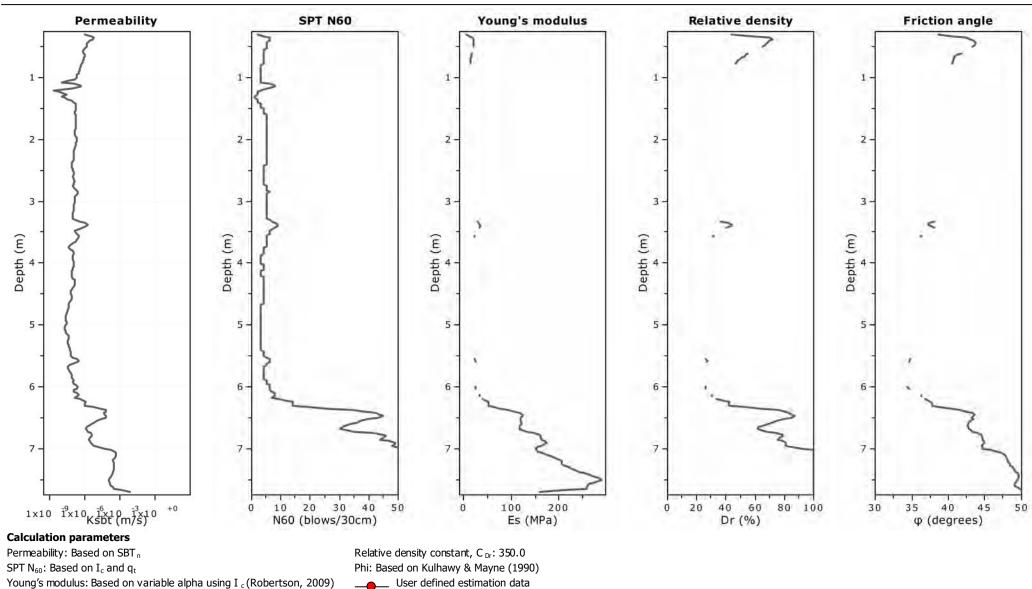

Geotechnical Software Merarhias 56 http://www.geologismiki.gr

Project:

Location:

Total depth: 7.78 m, Date: 4/18/2022 Surface Elevation: 0.00 m Coords: X:0.00, Y:0.00 Cone Type: Cone Operator:

Updated SBTn plots


SD: Sand-like - Dilative

GEOLOGISHIKA Geotechnical Software

GeoLogismiki Geotechnical Engineers Merarhias 56 http://www.geologismiki.gr

Project:

Location:

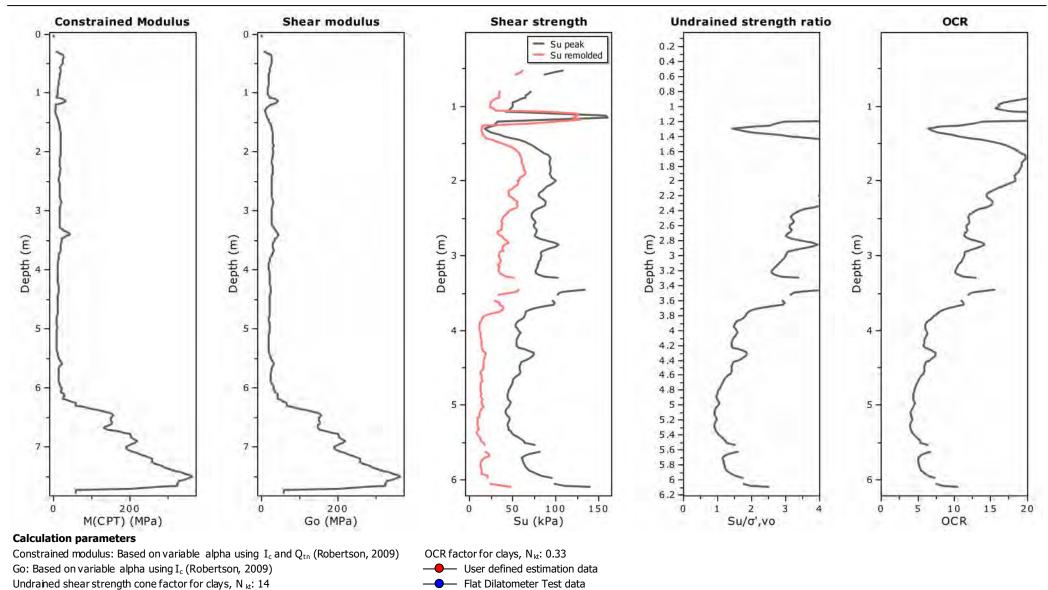
CPT: Sheet1

Cone Type:

Cone Operator:

Surface Elevation: 0.00 m

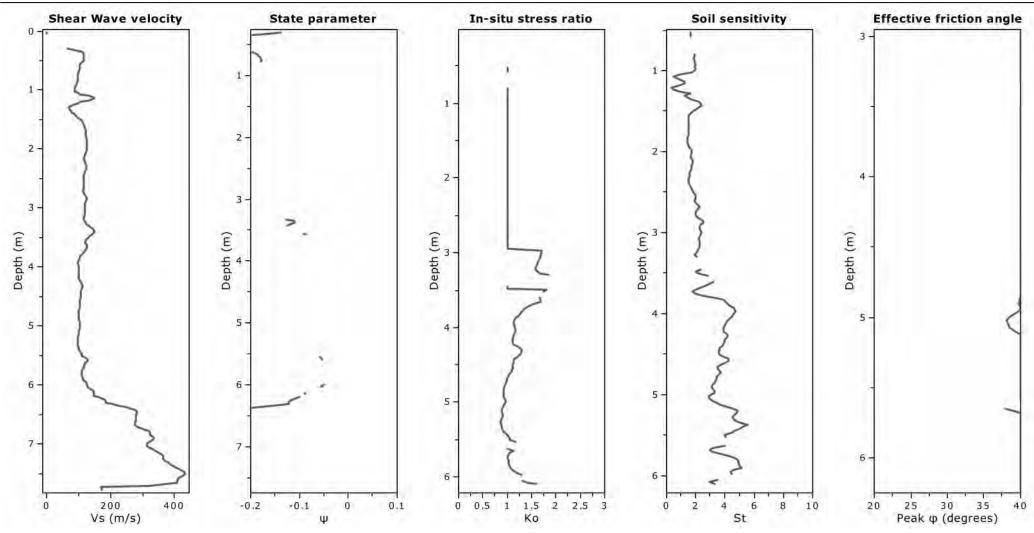
Coords: X:0.00, Y:0.00


Total depth: 7.78 m, Date: 4/18/2022

10

Project:

Location:


CPeT-IT v.3.5.4.9 - CPTU data presentation & interpretation software - Report created on: 4/18/2022, 2:06:55 PM Project file:

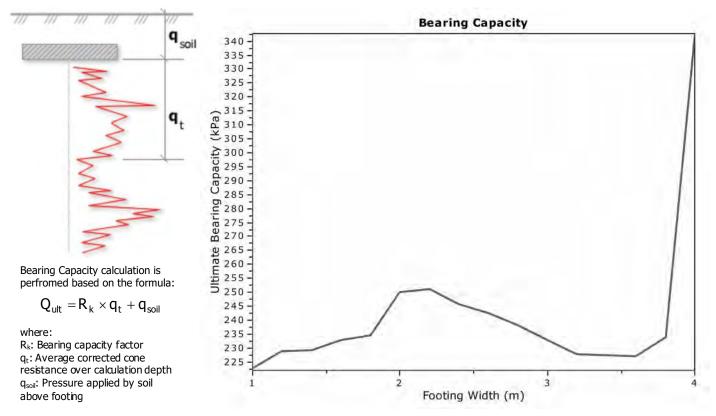
CPT: Sheet1

Project:

Location:

Calculation parameters

Soil Sensitivity factor, N_s: 7.00


CPT: Sheet1

Project:

Location:

CPT: Sheet1 Total depth: 7.78 m, Date: 4/18/2022 Surface Elevation: 0.00 m Coords: X:0.00, Y:0.00 Cone Type: Cone Operator:

:: Tabular results :: **End Depth** Soil Press. Ult. bearing No В Start Ave.qt Rk (m) Depth (m) (MPa) (kPa) cap. (kPa) (m) 1 1.00 0.50 2.00 1.07 0.20 9.50 222.72 2 1.20 0.50 2.30 1.10 0.20 9.50 228.80 9.50 1.40 0.50 2.60 1.10 0.20 229.22 3 4 0.50 2.90 1.60 1.12 0.20 9.50 232.78 5 1.80 0.50 3.20 1.12 0.20 9.50 234.41 3.50 2.00 1.20 6 0.50 0.20 9.50 250.13 1.21 0.20 7 2.20 0.50 3.80 9.50 251.21 8 2.40 0.50 4.10 1.18 0.20 9.50 245.64 0.50 4.40 1.16 0.20 9.50 242.34 9 2.60 2.80 4.70 1.14 0.20 10 0.50 9.50 238.18 11 3.00 0.50 5.00 1.12 0.20 9.50 232.78 5.30 1.09 12 3.20 0.50 0.20 9.50 227.81 3.40 0.50 5.60 1.09 0.20 9.50 13 227.48 14 3.60 0.50 5.90 1.09 0.20 9.50 226.94 15 3.80 0.50 6.20 1.12 0.20 9.50 234.03 16 4.00 0.50 6.50 1.66 0.20 9.50 342.02

Presented below is a list of formulas used for the estimation of various soil properties. The formulas are presented in SI unit system and assume that all components are expressed in the same units.

:: Unit Weight, g (kN/m³) ::

$$g = g_{w} \cdot \left(0.27 \cdot \log(R_{f}) + 0.36 \cdot \log(\frac{q_{t}}{p_{a}}) + 1.236 \right)$$

where g_w = water unit weight

:: Permeability, k (m/s) ::

 $I_{\,c}$ < 3.27 and $I_{\,c}$ > 1.00 then $k = 10^{\,0.952 \cdot 3.04 \cdot I_{c}}$

$$I_c \leq$$
 4.00 and $I_c >$ 3.27 then k = 10^{-4.52-1.37 \cdot I_c}

:: N_{SPT} (blows per 30 cm) ::

$$\begin{split} N_{60} = & \left(\frac{q_c}{P_a} \right) \cdot \frac{1}{10^{1.1268 - 0.2817 \cdot I_c}} \\ N_{1(60)} = & Q_{tn} \cdot \frac{1}{10^{1.1268 - 0.2817 \cdot I_c}} \end{split}$$

:: Young's Modulus, Es (MPa) ::

 $\begin{array}{l} (q_t - \sigma_v) \cdot 0.015 \cdot 10^{0.55 \cdot I_c + 1.68} \\ (\text{applicable only to } I_c < I_{c_cutoff}) \end{array}$

:: Relative Density, Dr (%) ::

 $100\cdot\sqrt{\frac{Q_{tn}}{k_{DR}}}$

(applicable only to SBT _: 5, 6, 7 and 8 or $I_c < I_{c_{autoff}}$)

:: State Parameter, ψ ::

 $\psi = 0.56 - 0.33 \cdot log(Q_{tn,cs})$

:: Drained Friction Angle, φ (°) ::

(applicable only to SBT n: 5, 6, 7 and 8 or $I_c < I_{c_cutoff}$)

:: 1-D constrained modulus, M (MPa) ::

 $\begin{array}{l} \mbox{If } I_c > 2.20 \\ a = 14 \mbox{ for } Q_{tn} > 14 \\ a = Q_{tn} \mbox{ for } Q_{tn} \leq 14 \\ M_{CPT} = a^{} (q_t - \sigma_v) \end{array}$

If $I_c \ge 2.20$

:: Small strain shear Modulus, Go (MPa) ::

$$G_0 = (q_t - \sigma_v) \cdot 0.0188 \cdot 10^{0.55 \cdot I_c + 1.68}$$

:: Shear Wave Velocity, Vs (m/s) ::

$$V_{s} = \left(\frac{G_{0}}{\rho}\right)^{0.50}$$

:: Undrained peak shear strength, Su (kPa) ::

 $N_{kt} = 10.50 + 7 \cdot \log(F_r)$ or user defined = $(a_* - \sigma_v)$

$$S_u = \frac{(q_t - \sigma_v)}{N_{kt}}$$

(applicable only to SBT n: 1, 2, 3, 4 and 9 or $I_c > I_{c_cutoff}$)

:: Remolded undrained shear strength, Su(rem) (kPa) ::

$$S_{u(rem)} = f_s$$
 (applicable only to SBT_n: 1, 2, 3, 4 and 9
or $I_c > I_c$ _{cutoff})

:: Overconsolidation Ratio, OCR ::

$$k_{OCR} = \left[\frac{Q_{tn}^{0.20}}{0.25 \cdot (10.50 \cdot +7 \cdot \log(F_r))}\right]^{1.25} \text{ or user defined}$$
$$OCR = k_{OCR} \cdot Q_{tn}$$

(applicable only to SBT _: 1, 2, 3, 4 and 9 or I _c > I _c_utoff)

:: In situ Stress Ratio, Ko ::

 $K_{o} = (1 - \sin \varphi') \cdot OCR^{\sin \varphi'}$

(applicable only to SBT _: 1, 2, 3, 4 and 9 or I _c > I _c_utoff)

:: Soil Sensitivity, St ::

$$S_t = \frac{N_S}{F_r}$$

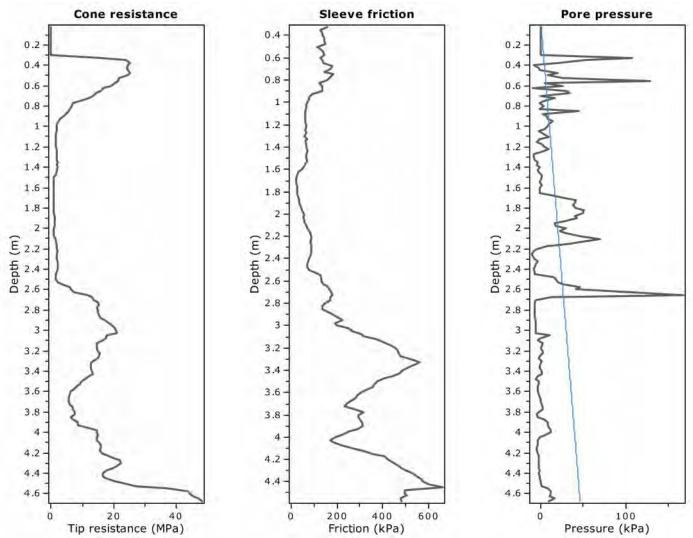
...

(applicable only to SBT _: 1, 2, 3, 4 and 9 or I _c > I _c_utoff)

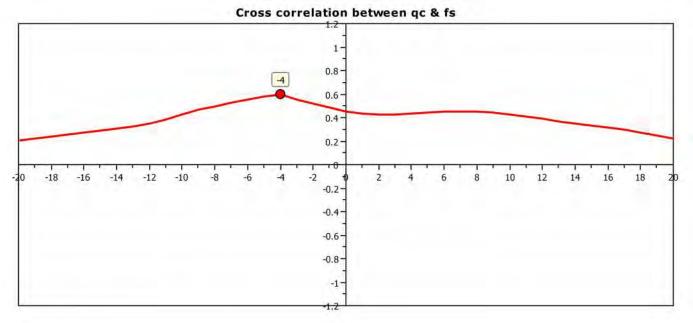
:: Peak Friction Angle, φ' (°) ::

 $\phi' = 29.5^{\circ} \cdot B_q^{0.121} \cdot (0.256 + 0.336 \cdot B_q + \log Q_t)$ (applicable for 0.10<B_q<1.00)

References

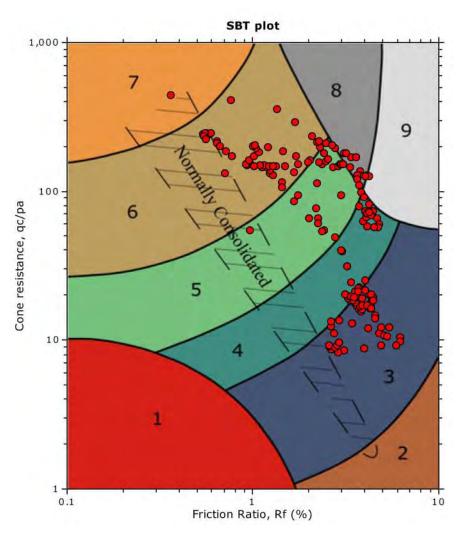

• Robertson, P.K., Cabal K.L., Guide to Cone Penetration Testing for Geotechnical Engineering, Gregg Drilling & Testing, Inc., 5 th Edition, November 2012

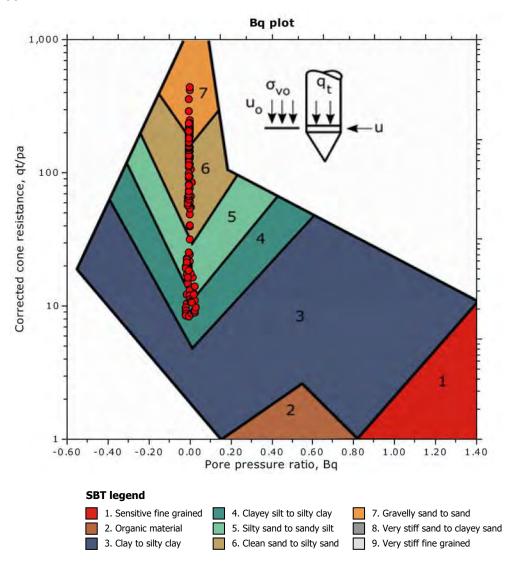
• Robertson, P.K., Interpretation of Cone Penetration Tests - a unified approach., Can. Geotech. J. 46(11): 1337–1355 (2009)


• N Barounis, J Philpot, Estimation of in-situ water content, void ratio, dry unit weight and porosity using CPT for saturated sands, Proc. 20th NZGS Geotechnical Symposium

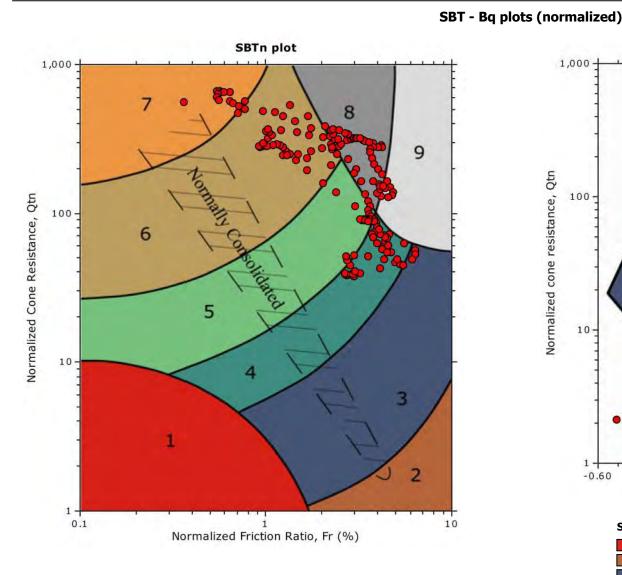
Project: Location:

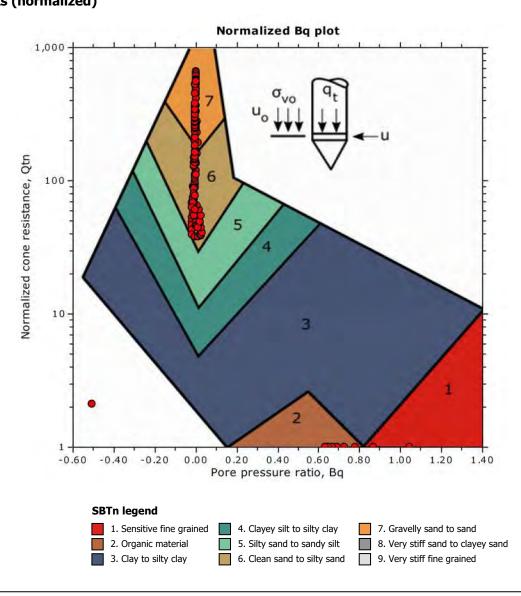
The plot below presents the cross correlation coeficient between the raw qc and fs values (as measured on the field). X axes presents the lag distance (one lag is the distance between two successive CPT measurements).





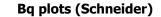
Location:

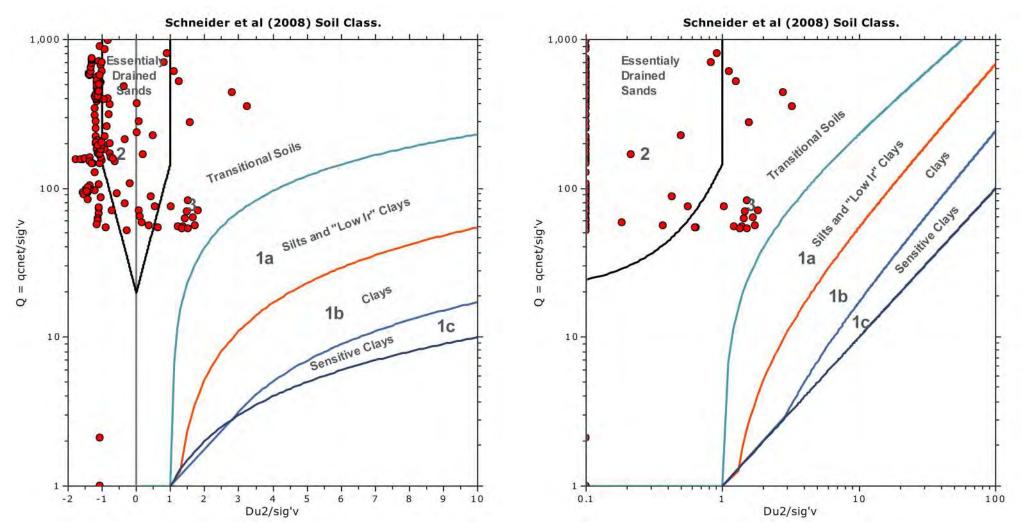




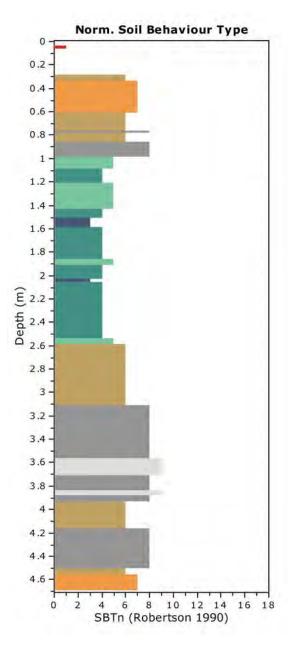
Location:

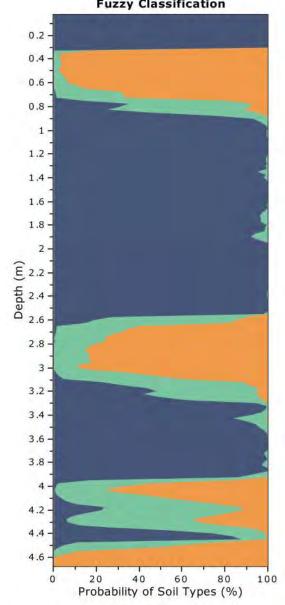
CPT: CPT-04





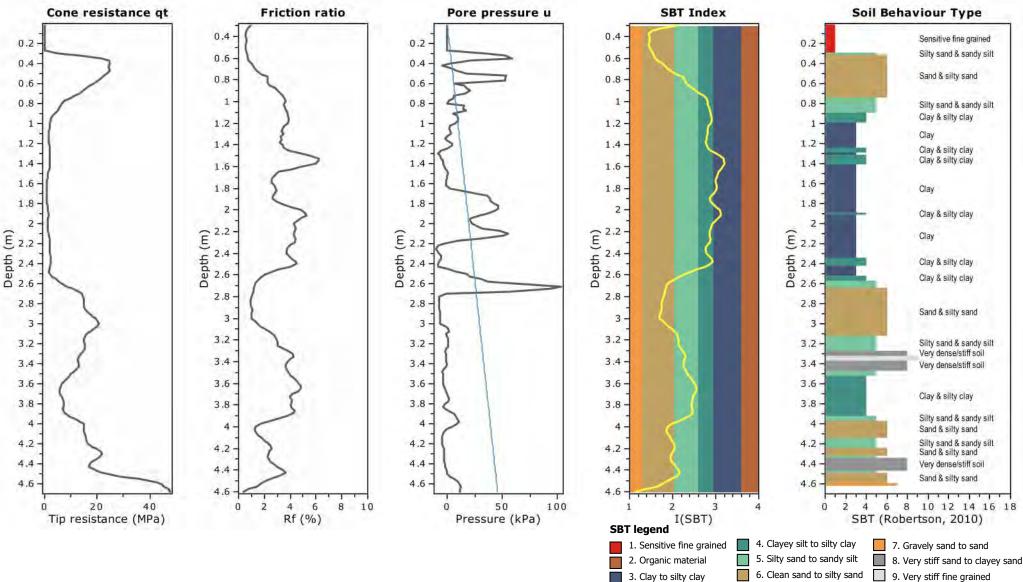
Location:


CPT: CPT-04



CPT: CPT-04 Total depth: 4.67 m, Date: 4/18/2022 Surface Elevation: 0.00 m Coords: X:0.00, Y:0.00 Cone Type: Cone Operator:

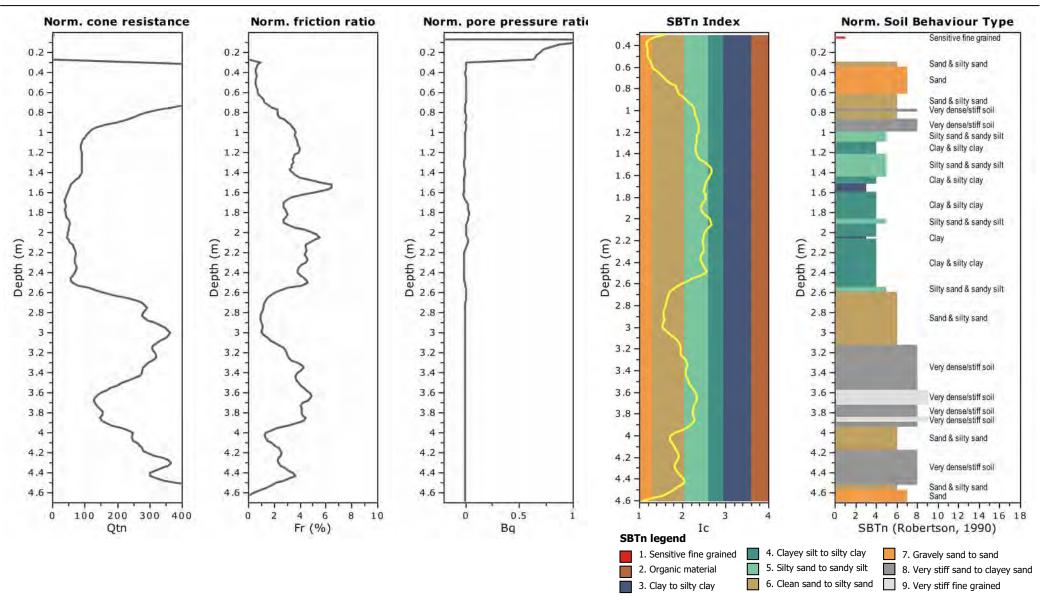
Project: Location:



Project:

Location:

CPT: CPT-04


Surface Elevation: 0.00 m Coords: X:0.00, Y:0.00 Cone Type: Cone Operator:

Total depth: 4.67 m, Date: 4/18/2022

Project:

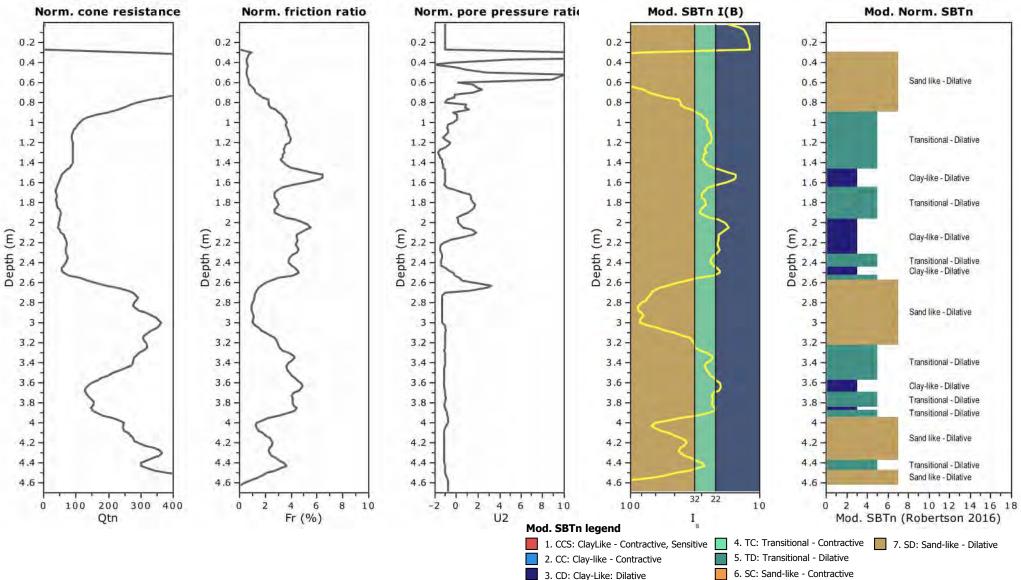
Location:

CPT: CPT-04

Cone Type:

Cone Operator:

Surface Elevation: 0.00 m


Coords: X:0.00, Y:0.00

Total depth: 4.67 m, Date: 4/18/2022

Project:

Location:

CPT: CPT-04

Cone Type:

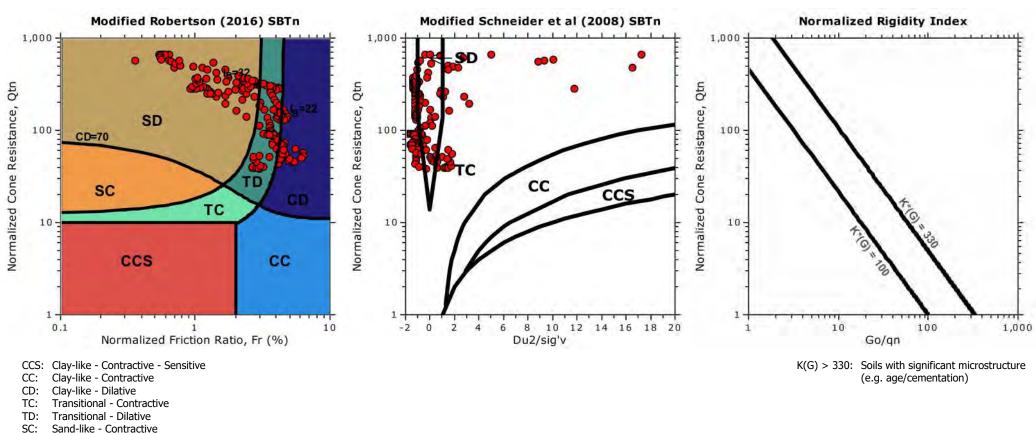
Cone Operator:

Surface Elevation: 0.00 m

Coords: X:0.00, Y:0.00

Total depth: 4.67 m, Date: 4/18/2022

Updated SBTn plots


CPT: CPT-04

Total depth: 4.67 m, Date: 4/18/2022 Surface Elevation: 0.00 m Coords: X:0.00, Y:0.00 Cone Type: Cone Operator:

Project:

Geotechnical Software

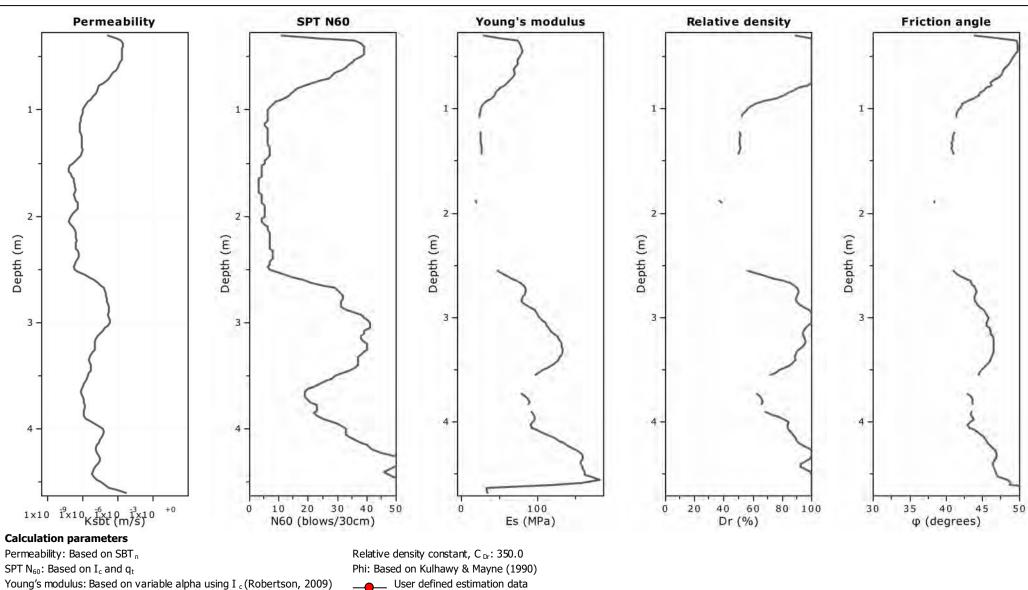
Location:

SD: Sand-like - Dilative

GeoLogismiki

Merarhias 56

Geotechnical Engineers


http://www.geologismiki.gr

GeoLogismiki Geotechnical Software

Geotechnical Engineers Merarhias 56 http://www.geologismiki.gr

Project:

Location:

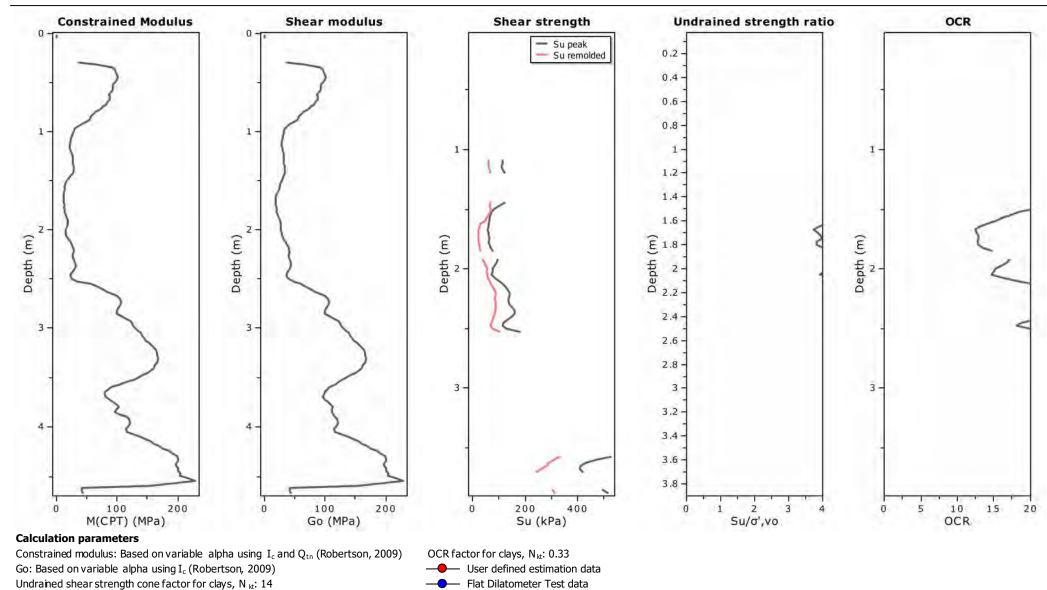
Cone Type:

Cone Operator:

Surface Elevation: 0.00 m

Coords: X:0.00, Y:0.00

Total depth: 4.67 m, Date: 4/18/2022

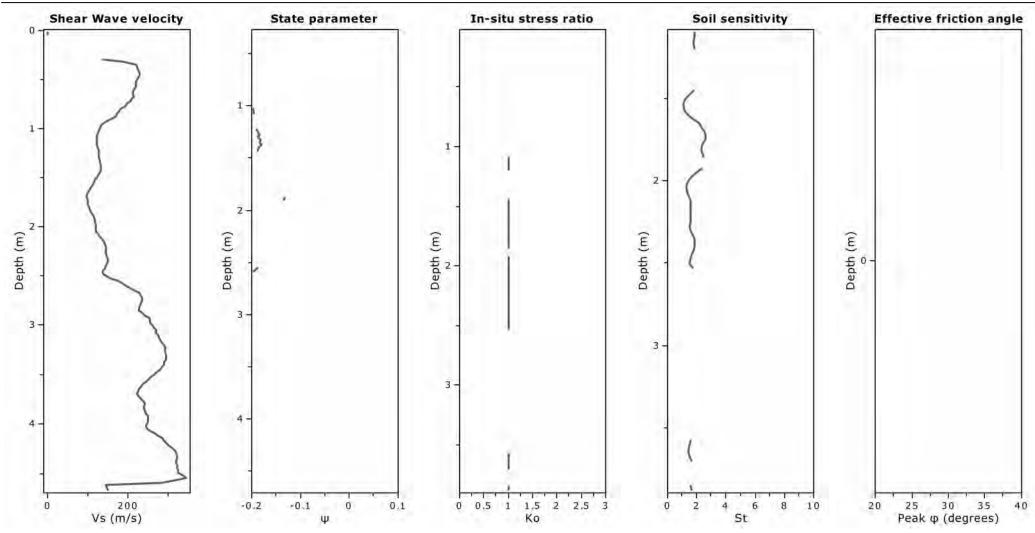

10

GEOLOGISHIKI

GeoLogismiki Geotechnical Engineers Merarhias 56 http://www.geologismiki.gr

Project:

Location:



CPT: CPT-04

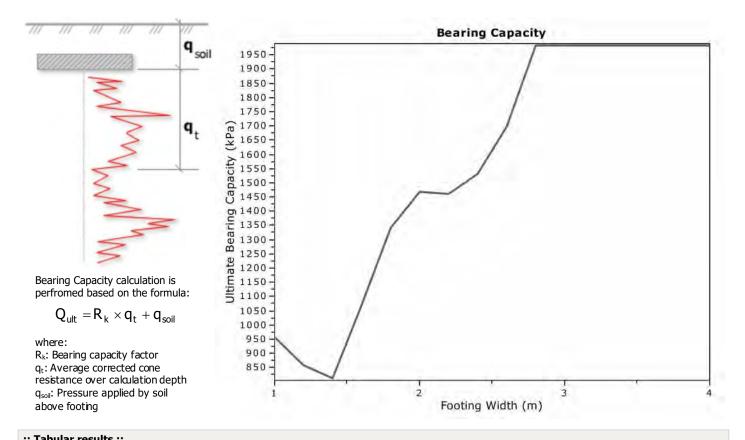
GeoLogismiki Geotechnical Engineers Merarhias 56 http://www.geologismiki.gr

Project:

Location:

Calculation parameters

Soil Sensitivity factor, N_s: 7.00


CPT: CPT-04

Project:

Location:

CPT: CPT-04

	r results ::						
No	В (m)	Start Depth (m)	End Depth (m)	Ave.q _t (MPa)	R _k	Soil Press. (kPa)	Ult. bearing cap. (kPa)
1	1.00	0.50	2.00	4.74	0.20	9.50	958.13
2	1.20	0.50	2.30	4.24	0.20	9.50	857.23
3	1.40	0.50	2.60	4.02	0.20	9.50	812.84
4	1.60	0.50	2.90	5.30	0.20	9.50	1068.90
5	1.80	0.50	3.20	6.65	0.20	9.50	1339.73
6	2.00	0.50	3.50	7.29	0.20	9.50	1466.51
7	2.20	0.50	3.80	7.25	0.20	9.50	1459.34
8	2.40	0.50	4.10	7.60	0.20	9.50	1530.20
9	2.60	0.50	4.40	8.44	0.20	9.50	1696.57
10	2.80	0.50	4.70	9.86	0.20	9.50	1982.22
11	3.00	0.50	5.00	9.86	0.20	9.50	1982.22
12	3.20	0.50	5.30	9.86	0.20	9.50	1982.22
13	3.40	0.50	5.60	9.86	0.20	9.50	1982.22
14	3.60	0.50	5.90	9.86	0.20	9.50	1982.22
15	3.80	0.50	6.20	9.86	0.20	9.50	1982.22
16	4.00	0.50	6.50	9.86	0.20	9.50	1982.22

Presented below is a list of formulas used for the estimation of various soil properties. The formulas are presented in SI unit system and assume that all components are expressed in the same units.

:: Unit Weight, g (kN/m³) ::

$$g = g_{w} \cdot \left(0.27 \cdot \log(R_{f}) + 0.36 \cdot \log(\frac{q_{t}}{p_{a}}) + 1.236 \right)$$

where g_w = water unit weight

:: Permeability, k (m/s) ::

 $I_{\,c}$ < 3.27 and $I_{\,c}$ > 1.00 then k = 10 $^{0.952\text{--}3.04\text{-}I_{c}}$

$$I_c \leq$$
 4.00 and $I_c >$ 3.27 then k = 10^{-4.52-1.37 \cdot I_c}

:: N_{SPT} (blows per 30 cm) ::

$$\begin{split} N_{60} = & \left(\frac{q_c}{P_a} \right) \cdot \frac{1}{10^{1.1268 - 0.2817 \cdot I_c}} \\ N_{1(60)} = & Q_{tn} \cdot \frac{1}{10^{1.1268 - 0.2817 \cdot I_c}} \end{split}$$

:: Young's Modulus, Es (MPa) ::

 $\begin{array}{l} (q_t - \sigma_v) \cdot 0.015 \cdot 10^{0.55 \cdot I_c + 1.68} \\ (\text{applicable only to } I_c < I_{c_cutoff}) \end{array}$

:: Relative Density, Dr (%) ::

 $100\cdot\sqrt{\frac{Q_{tn}}{k_{DR}}}$

(applicable only to SBT _: 5, 6, 7 and 8 or $I_c < I_{c_{cutoff}}$)

:: State Parameter, ψ ::

 $\psi = 0.56 - 0.33 \cdot log(Q_{tn,cs})$

:: Drained Friction Angle, φ (°) ::

(applicable only to SBT n: 5, 6, 7 and 8 or $I_c < I_{c_cutoff}$)

:: 1-D constrained modulus, M (MPa) ::

 $\begin{array}{l} \mbox{If } I_c > 2.20 \\ a = 14 \mbox{ for } Q_{tn} > 14 \\ a = Q_{tn} \mbox{ for } Q_{tn} \leq 14 \\ M_{CPT} = a^{} (q_t - \sigma_v) \end{array}$

If $I_c \ge 2.20$

:: Small strain shear Modulus, Go (MPa) ::

$$G_0 = (q_t - \sigma_v) \cdot 0.0188 \cdot 10^{0.55 \cdot I_c + 1.68}$$

:: Shear Wave Velocity, Vs (m/s) ::

$$V_{s} = \left(\frac{G_{0}}{\rho}\right)^{0.50}$$

:: Undrained peak shear strength, Su (kPa) ::

 $N_{kt} = 10.50 + 7 \cdot \log(F_r)$ or user defined = $(a_* - \sigma_v)$

$$S_u = \frac{(q_t - \sigma_v)}{N_{kt}}$$

(applicable only to SBT n: 1, 2, 3, 4 and 9 or $I_c > I_{c_cutoff}$)

:: Remolded undrained shear strength, Su(rem) (kPa) ::

$$S_{u(rem)} = f_s$$
 (applicable only to SBT_n: 1, 2, 3, 4 and 9
or $I_c > I_c$ _{cutoff})

:: Overconsolidation Ratio, OCR ::

$$k_{OCR} = \left[\frac{Q_{tn}^{0.20}}{0.25 \cdot (10.50 \cdot +7 \cdot \log(F_r))}\right]^{1.25} \text{ or user defined}$$
$$OCR = k_{OCR} \cdot Q_{tn}$$

(applicable only to SBT _: 1, 2, 3, 4 and 9 or I _c > I _c_utoff)

:: In situ Stress Ratio, Ko ::

 $K_{o} = (1 - \sin \varphi') \cdot OCR^{\sin \varphi'}$

(applicable only to SBT _: 1, 2, 3, 4 and 9 or I _c > I _c_utoff)

:: Soil Sensitivity, S $_{\rm t}$::

$$S_t = \frac{N_S}{F_r}$$

...

(applicable only to SBT _: 1, 2, 3, 4 and 9 or I _c > I _c_cutoff)

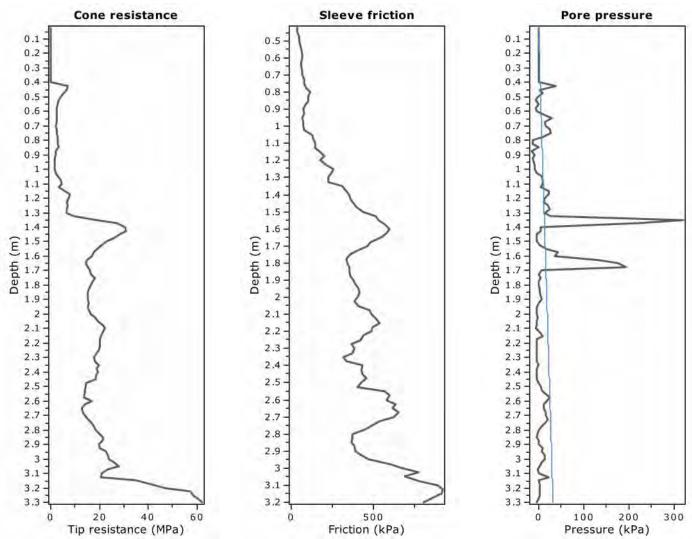
:: Peak Friction Angle, φ' (°) ::

 $\phi' = 29.5^{\circ} \cdot B_q^{0.121} \cdot (0.256 + 0.336 \cdot B_q + \log Q_t)$ (applicable for 0.10<B_q<1.00)

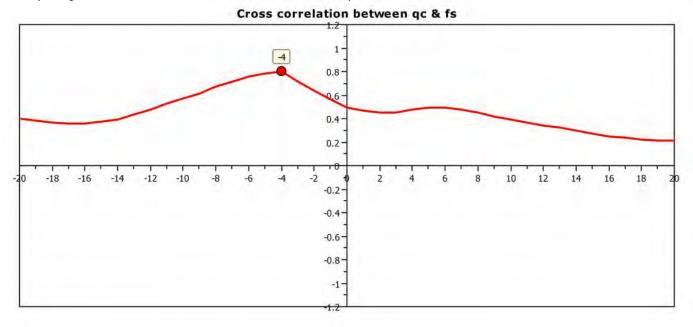
References

• Robertson, P.K., Cabal K.L., Guide to Cone Penetration Testing for Geotechnical Engineering, Gregg Drilling & Testing, Inc., 5 th Edition, November 2012

• Robertson, P.K., Interpretation of Cone Penetration Tests - a unified approach., Can. Geotech. J. 46(11): 1337–1355 (2009)


• N Barounis, J Philpot, Estimation of in-situ water content, void ratio, dry unit weight and porosity using CPT for saturated sands, Proc. 20th NZGS Geotechnical Symposium

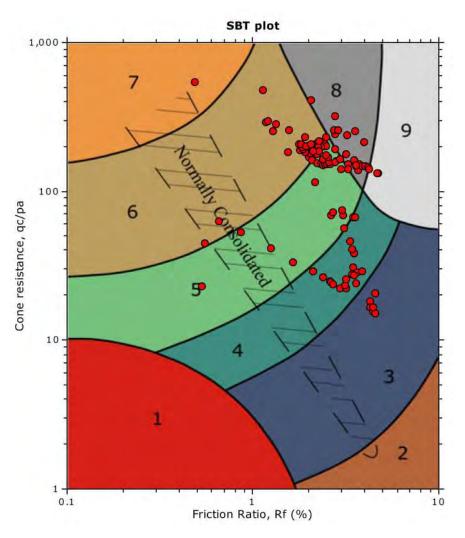
GeoLogismiki

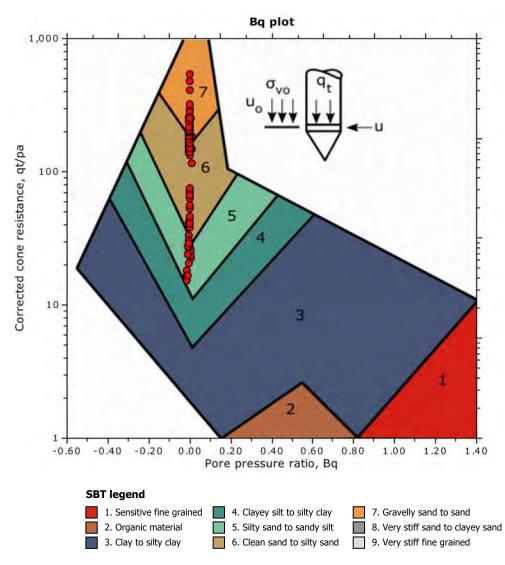

Geotechnical Engineers Merarhias 56 http://www.geologismiki.gr

Project: Location:

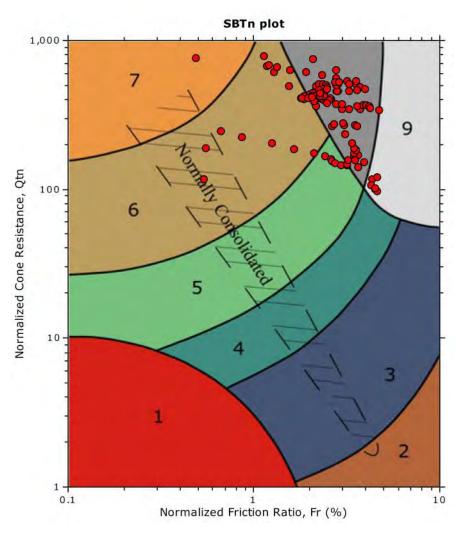
GF

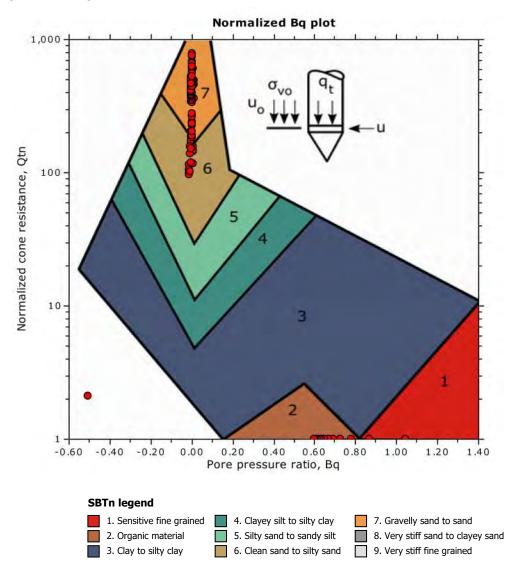
The plot below presents the cross correlation coeficient between the raw qc and fs values (as measured on the field). X axes presents the lag distance (one lag is the distance between two successive CPT measurements).



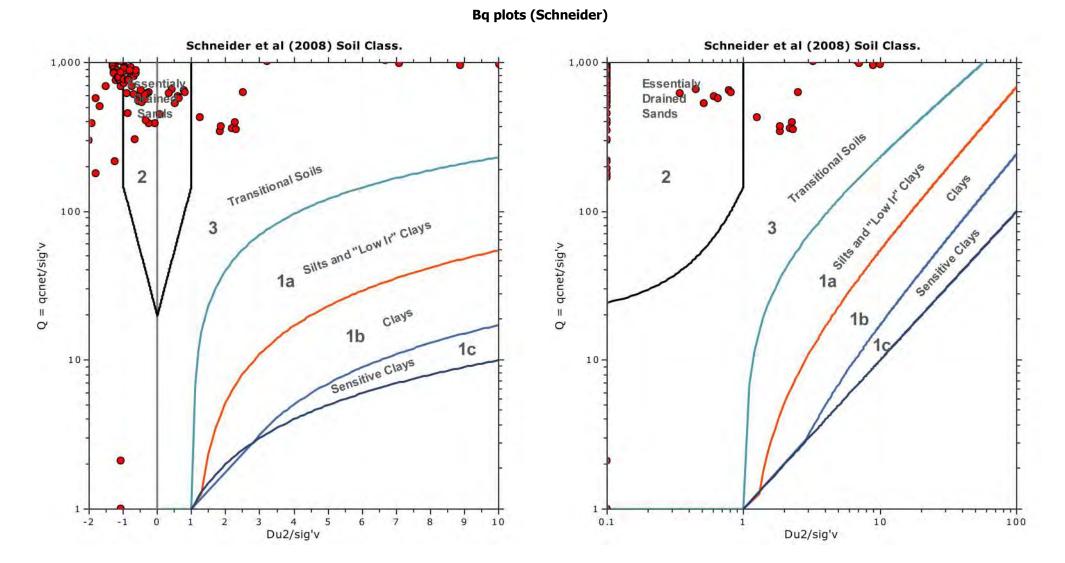


Location:





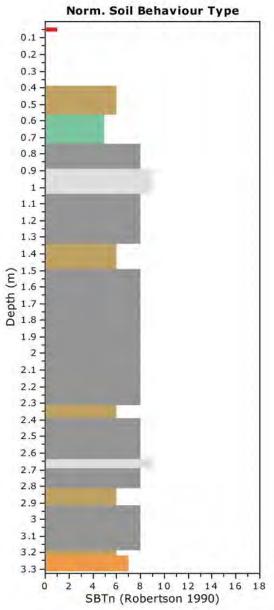
Location:

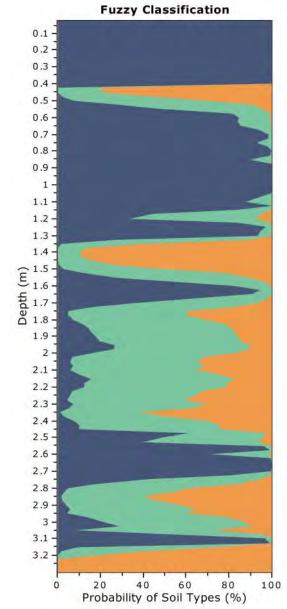


Location:

CPT: CPT-05 Total depth: 3.30 m, Date: 4/18/2022 Surface Elevation: 0.00 m Coords: X:0.00, Y:0.00 Cone Type:

Cone Operator:

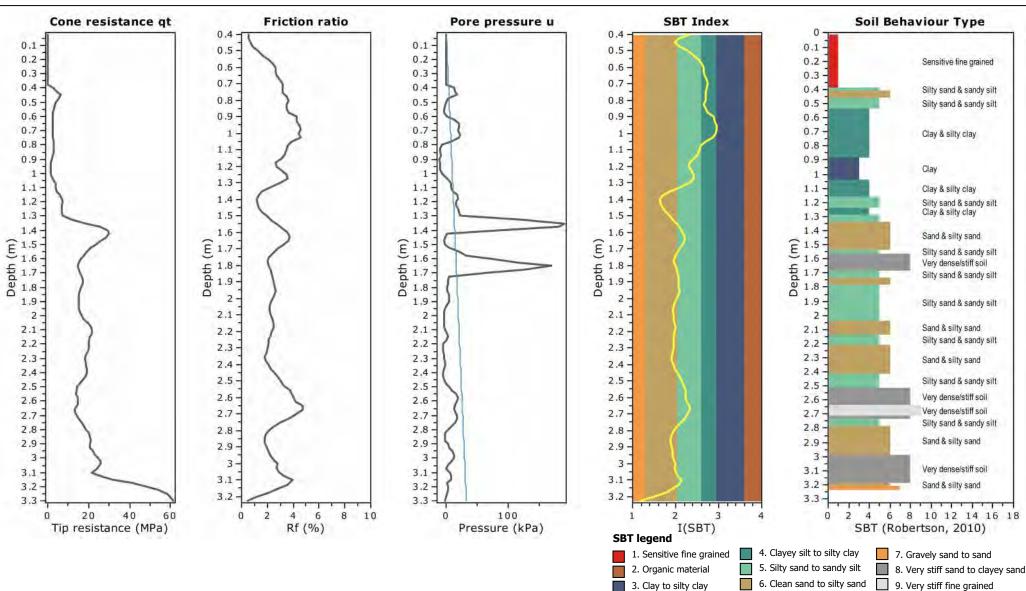




Location:

GeoLogismiki Geotechnical Engineers Merarhias 56 http://www.geologismiki.gr CPT: CPT-05

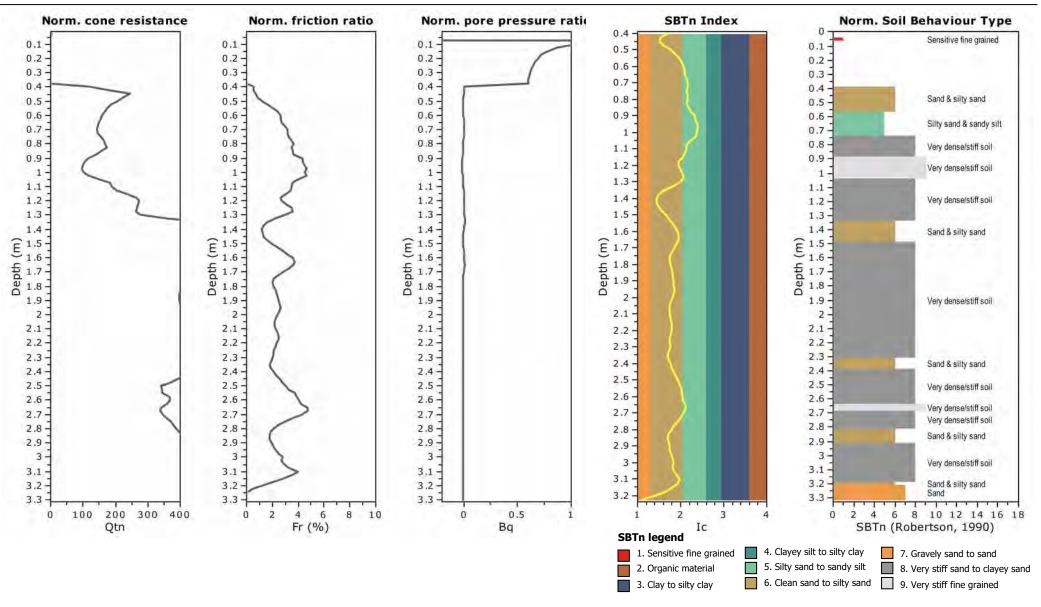
Total depth: 3.30 m, Date: 4/18/2022 Surface Elevation: 0.00 m Coords: X:0.00, Y:0.00 Cone Type: Cone Operator:



1.1 1.2 1.3 1.4 (L) 1.5 1.6 1.7 2.1 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.8

Project:

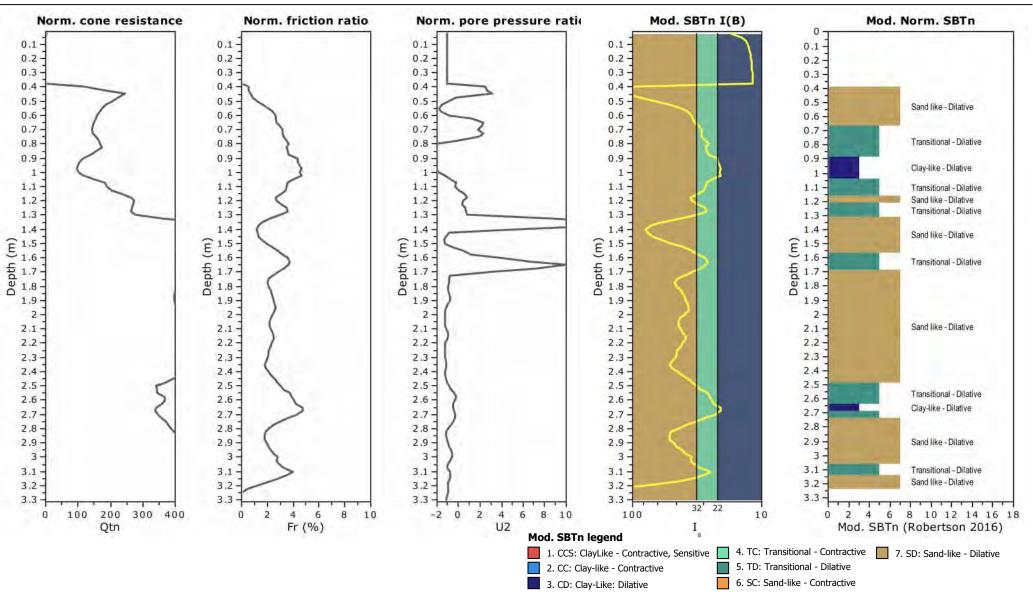
Location:



CPT: CPT-05

Project:

Location:



CPT: CPT-05

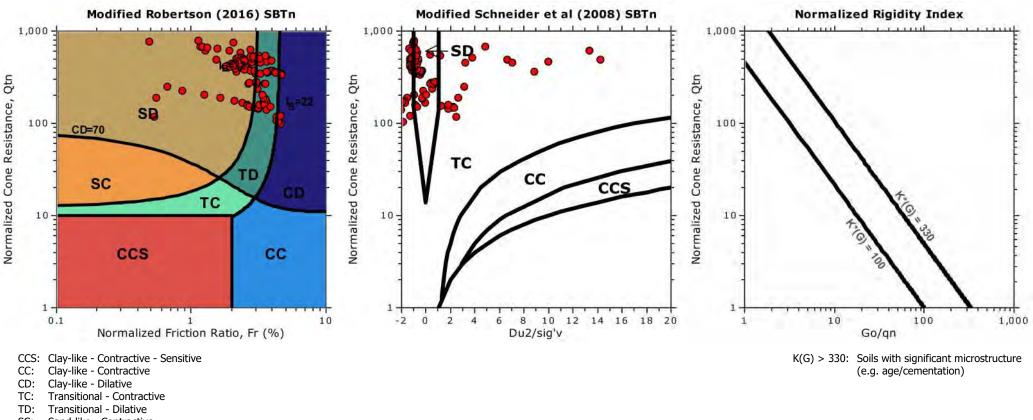
Project:

Location:

CPT: CPT-05

GeoLogismiki Geotechnical Engineers Merarhias 56

http://www.geologismiki.gr

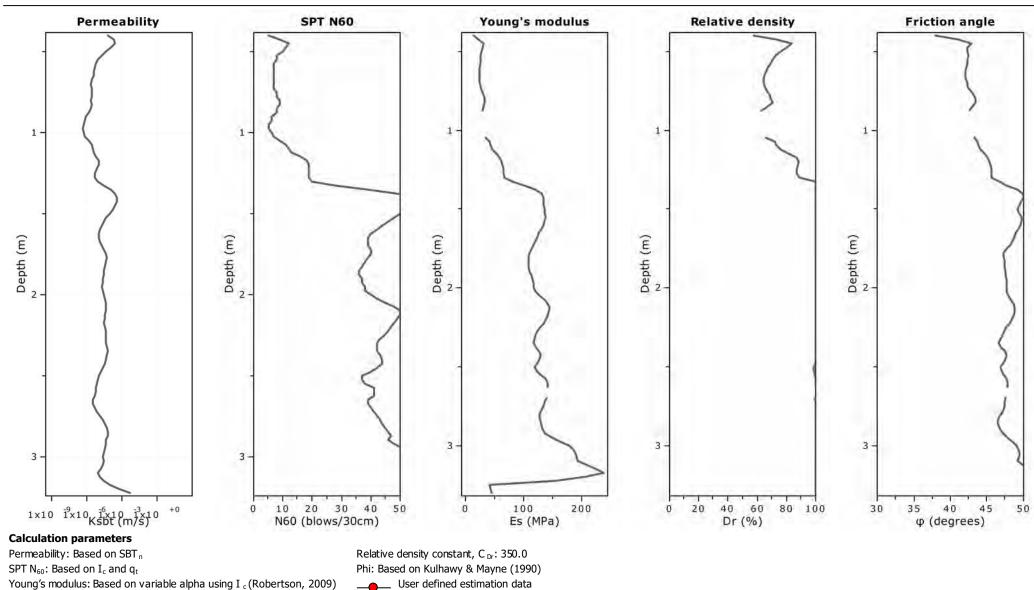

Project:

Geotechnical Software

Location:

Total depth: 3.30 m, Date: 4/18/2022 Surface Elevation: 0.00 m Coords: X:0.00, Y:0.00 Cone Type: Cone Operator:

Updated SBTn plots


- SC: Sand-like Contractive
- SD: Sand-like Dilative

GEOLOGISHIKI GEOLOGISHIKI Geotechnical Software

GeoLogismiki Geotechnical Engineers Merarhias 56 http://www.geologismiki.gr

Project:

Location:

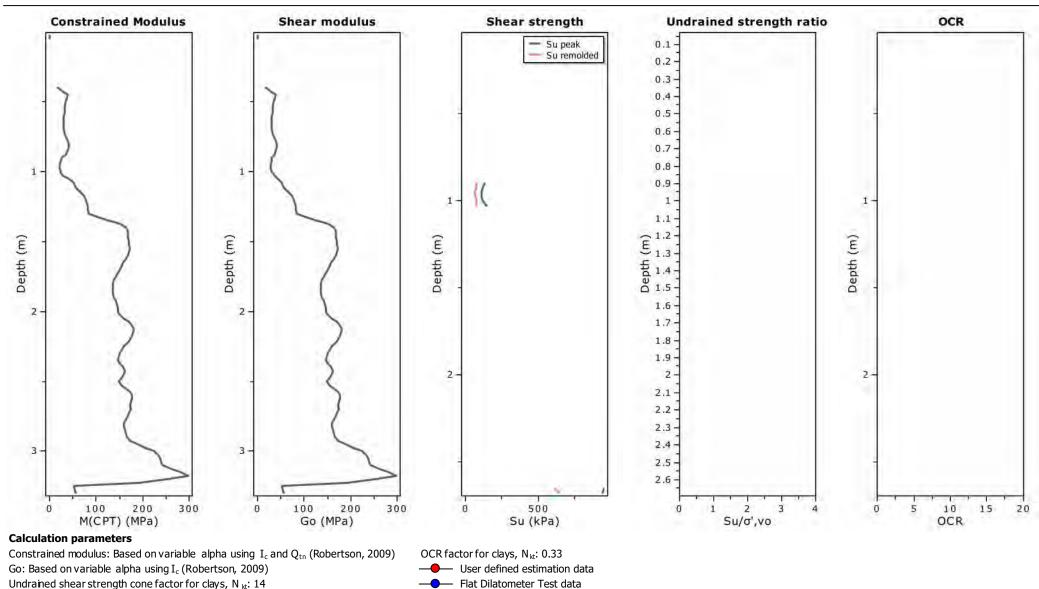
CPT: CPT-05

Cone Type:

Cone Operator:

Surface Elevation: 0.00 m

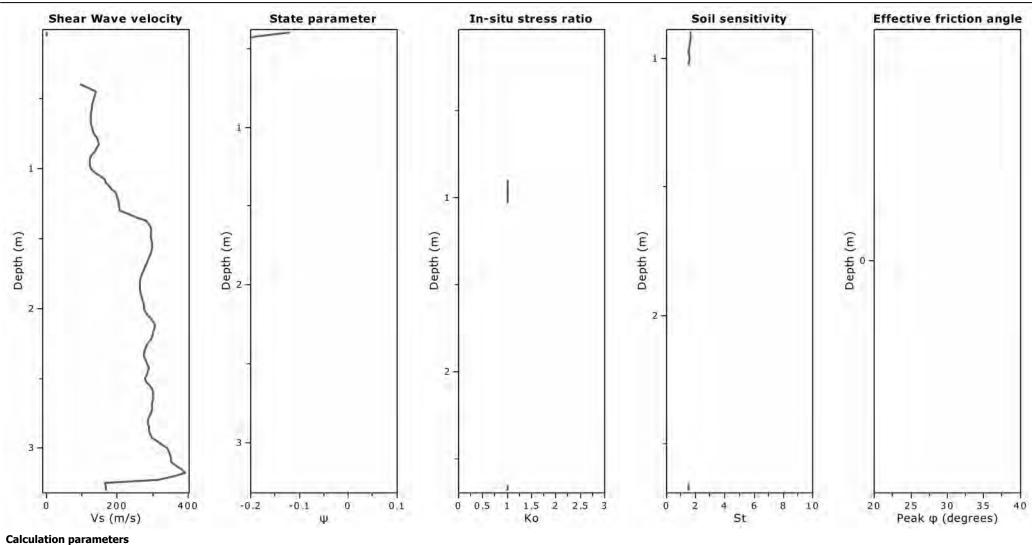
Coords: X:0.00, Y:0.00


Total depth: 3.30 m, Date: 4/18/2022

10

Project:

Location:


CPT: CPT-05

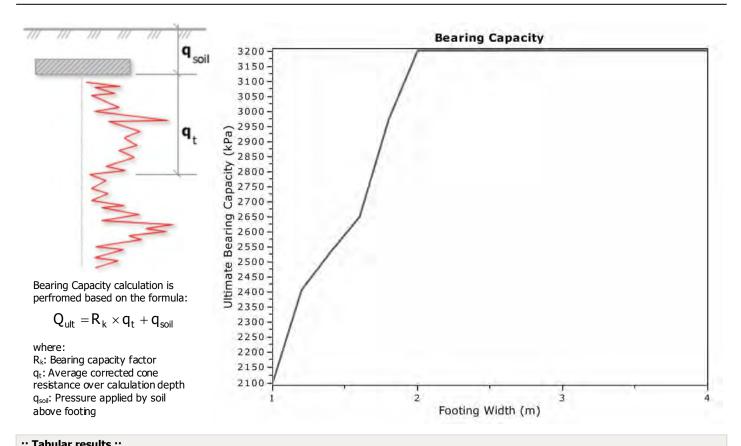
GEOLOGISHIKI Geotechnical Software

GeoLogismiki Geotechnical Engineers Merarhias 56 http://www.geologismiki.gr

Project:

Location:

calculation parameters


Soil Sensitivity factor, N_s: 7.00

CPT: CPT-05

Project:

Location:

Tabula	r results ::						
Νο	B (m)	Start Depth (m)	End Depth (m)	Ave.q _t (MPa)	R _k	Soil Press. (kPa)	Ult. bearing cap. (kPa)
1	1.00	0.50	2.00	10.44	0.20	9.50	2098.36
2	1.20	0.50	2.30	12.00	0.20	9.50	2408.53
3	1.40	0.50	2.60	12.62	0.20	9.50	2533.53
4	1.60	0.50	2.90	13.20	0.20	9.50	2649.39
5	1.80	0.50	3.20	14.82	0.20	9.50	2973.04
6	2.00	0.50	3.50	15.96	0.20	9.50	3201.78
7	2.20	0.50	3.80	15.96	0.20	9.50	3201.78
8	2.40	0.50	4.10	15.96	0.20	9.50	3201.78
9	2.60	0.50	4.40	15.96	0.20	9.50	3201.78
10	2.80	0.50	4.70	15.96	0.20	9.50	3201.78
11	3.00	0.50	5.00	15.96	0.20	9.50	3201.78
12	3.20	0.50	5.30	15.96	0.20	9.50	3201.78
13	3.40	0.50	5.60	15.96	0.20	9.50	3201.78
14	3.60	0.50	5.90	15.96	0.20	9.50	3201.78
15	3.80	0.50	6.20	15.96	0.20	9.50	3201.78
16	4.00	0.50	6.50	15.96	0.20	9.50	3201.78

Presented below is a list of formulas used for the estimation of various soil properties. The formulas are presented in SI unit system and assume that all components are expressed in the same units.

:: Unit Weight, g (kN/m³) ::

$$g = g_w \cdot \left(0.27 \cdot \log(R_f) + 0.36 \cdot \log(\frac{q_t}{p_a}) + 1.236 \right)$$

where g_w = water unit weight

:: Permeability, k (m/s) ::

 $I_{\,c}$ < 3.27 and $I_{\,c}$ >1.00 then k $=10^{\,0.952\text{--}3.04\cdot I_{c}}$

$$I_c \leq 4.00$$
 and $I_c > 3.27$ then $k = 10^{-4.52 - 1.37 \cdot I_c}$

:: N_{SPT} (blows per 30 cm) ::

$$\begin{split} N_{60} = & \left(\frac{q_c}{P_a} \right) \cdot \frac{1}{10^{1.1268 - 0.2817 \cdot I_c}} \\ N_{1(60)} = & Q_{tn} \cdot \frac{1}{10^{1.1268 - 0.2817 \cdot I_c}} \end{split}$$

:: Young's Modulus, Es (MPa) ::

 $\begin{array}{l} (q_t - \sigma_v) \cdot 0.015 \cdot 10^{0.55 \cdot I_c + 1.68} \\ (\text{applicable only to } I_c < I_{c_cutoff}) \end{array}$

:: Relative Density, Dr (%) ::

 $100\cdot\sqrt{\frac{Q_{tn}}{k_{DR}}}$

(applicable only to SBT _: 5, 6, 7 and 8 or $I_c < I_{c_cutoff}$)

:: State Parameter, ψ ::

 $\psi = 0.56 - 0.33 \cdot log(Q_{tn,cs})$

:: Drained Friction Angle, φ (°) ::

(applicable only to SBT n: 5, 6, 7 and 8 or $I_c < I_{c_cutoff}$)

:: 1-D constrained modulus, M (MPa) ::

 $\begin{array}{l} \mbox{If } I_c > 2.20 \\ a = 14 \mbox{ for } Q_{tn} > 14 \\ a = Q_{tn} \mbox{ for } Q_{tn} \leq 14 \\ M_{CPT} = a^{} (q_t - \sigma_v) \end{array}$

If $I_c \ge 2.20$

:: Small strain shear Modulus, Go (MPa) ::

$$G_0 = (q_t - \sigma_v) \cdot 0.0188 \cdot 10^{0.55 \cdot I_c + 1.68}$$

:: Shear Wave Velocity, Vs (m/s) ::

$$V_{s} = \left(\frac{G_{0}}{\rho}\right)^{0.50}$$

:: Undrained peak shear strength, Su (kPa) ::

 $N_{kt} = 10.50 + 7 \cdot \log(F_r)$ or user defined = $(a_* - \sigma_v)$

$$S_u = \frac{(q_t - \sigma_v)}{N_{kt}}$$

(applicable only to SBT _: 1, 2, 3, 4 and 9 or I _c > I _c_utoff)

:: Remolded undrained shear strength, Su(rem) (kPa) ::

$$S_{u(rem)} = f_s$$
 (applicable only to SBT_n: 1, 2, 3, 4 and 9
or $I_c > I_c$ _{cutoff})

:: Overconsolidation Ratio, OCR ::

$$k_{OCR} = \left[\frac{Q_{tn}^{0.20}}{0.25 \cdot (10.50 \cdot +7 \cdot \log(F_r))}\right]^{1.25} \text{ or user defined}$$
$$OCR = k_{OCR} \cdot Q_{tn}$$

(applicable only to SBT _: 1, 2, 3, 4 and 9 or $I_c > I_{c_cutoff}$)

:: In situ Stress Ratio, Ko ::

 $K_{o} = (1 - \sin \varphi') \cdot OCR^{\sin \varphi'}$

(applicable only to SBT_n: 1, 2, 3, 4 and 9 or $I_{\rm c} > I_{c_cutoff}$)

:: Soil Sensitivity, S $_{\rm t}$::

$$S_t = \frac{N_S}{F_r}$$

...

(applicable only to SBT _: 1, 2, 3, 4 and 9 or I _c > I _c_utoff)

:: Peak Friction Angle, φ' (°) ::

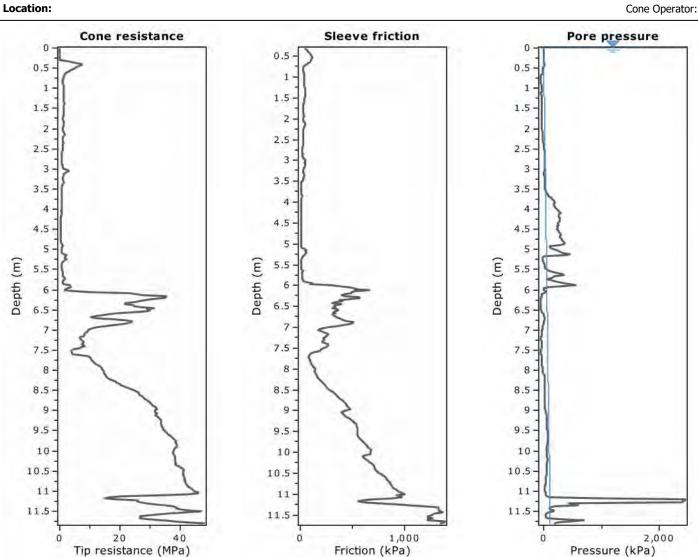
 $\phi' = 29.5^{\circ} \cdot B_q^{0.121} \cdot (0.256 + 0.336 \cdot B_q + \log Q_t)$ (applicable for 0.10<B_q<1.00)

References

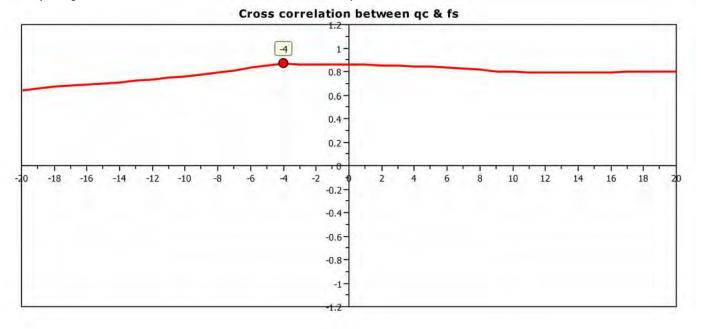
• Robertson, P.K., Cabal K.L., Guide to Cone Penetration Testing for Geotechnical Engineering, Gregg Drilling & Testing, Inc., 5 th Edition, November 2012

• Robertson, P.K., Interpretation of Cone Penetration Tests - a unified approach., Can. Geotech. J. 46(11): 1337–1355 (2009)

• N Barounis, J Philpot, Estimation of in-situ water content, void ratio, dry unit weight and porosity using CPT for saturated sands, Proc. 20th NZGS Geotechnical Symposium


GeoLogismiki

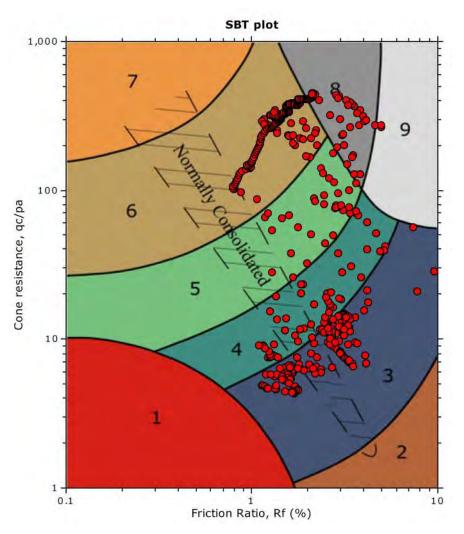
GF

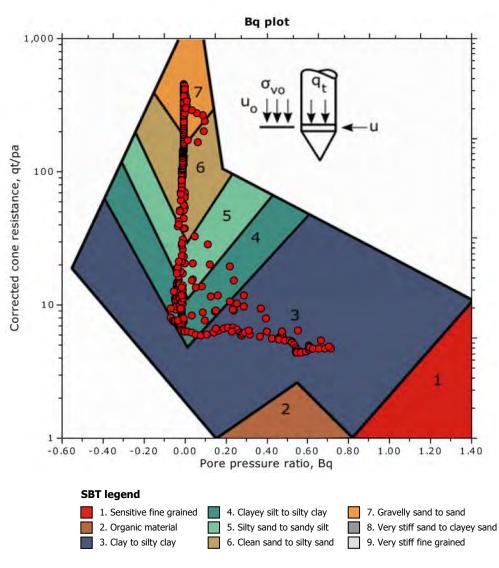

Project:

Geotechnical Engineers Merarhias 56 http://www.geologismiki.gr CPT: Sheet1

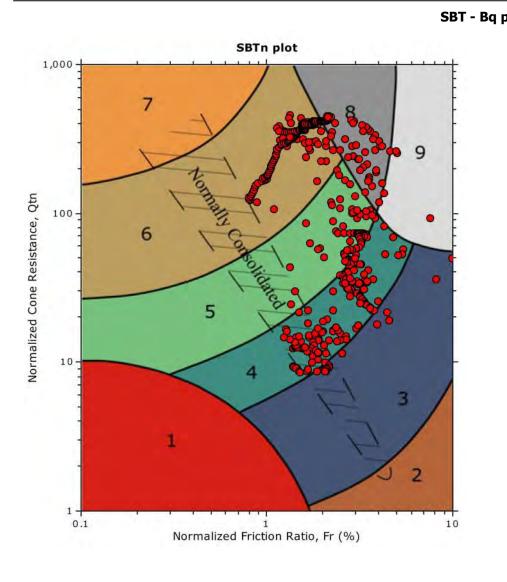
Total depth: 11.80 m, Date: 4/18/2022 Surface Elevation: 0.00 m Coords: X:0.00, Y:0.00 Cone Type: Cone Operator:

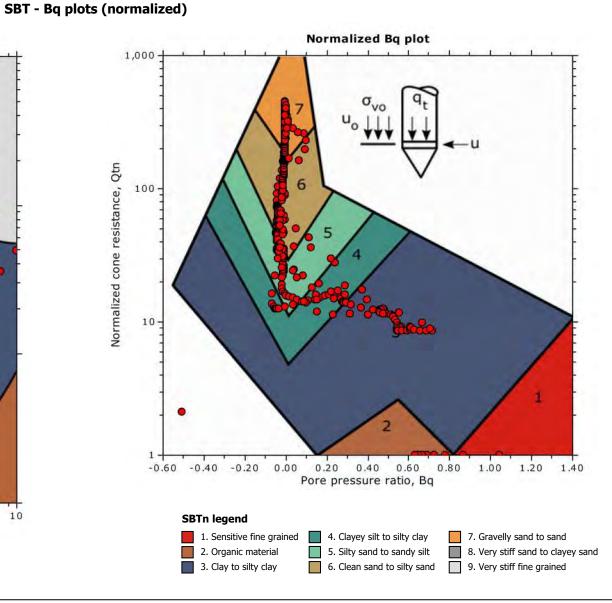
The plot below presents the cross correlation coeficient between the raw qc and fs values (as measured on the field). X axes presents the lag distance (one lag is the distance between two successive CPT measurements).


CPeT-IT v.3.5.4.9 - CPTU data presentation & interpretation software - Report created on: 4/18/2022, 2:19:06 PM Project file:



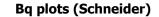
Location:

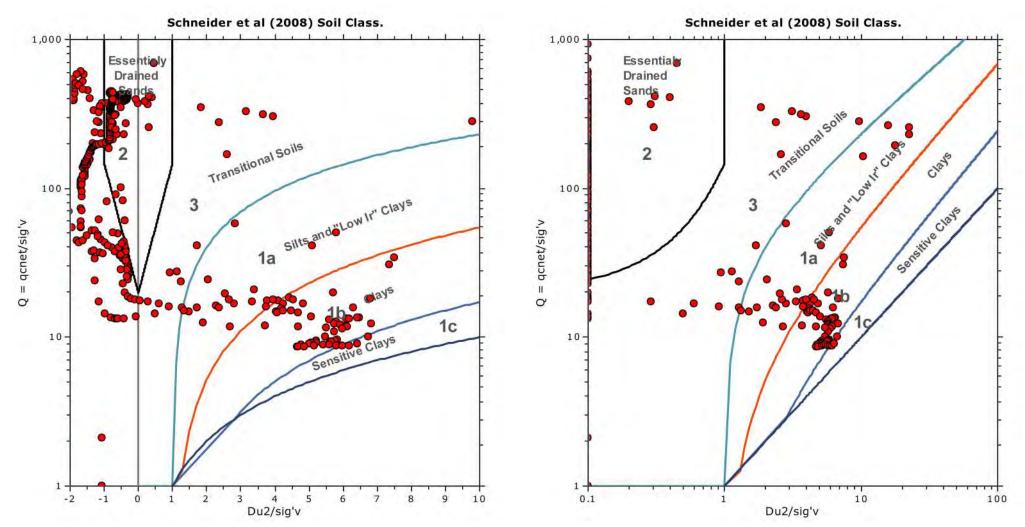




Location:

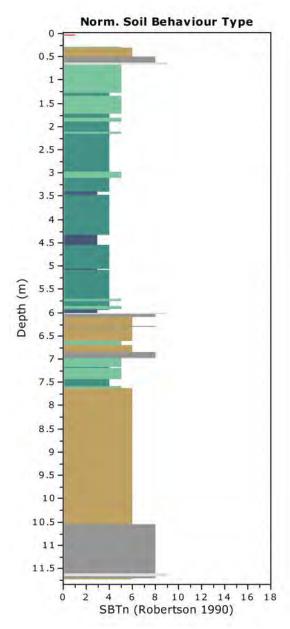
CPT: Sheet1

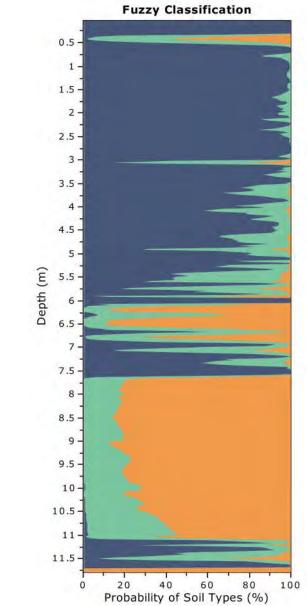




Location:

CPT: Sheet1

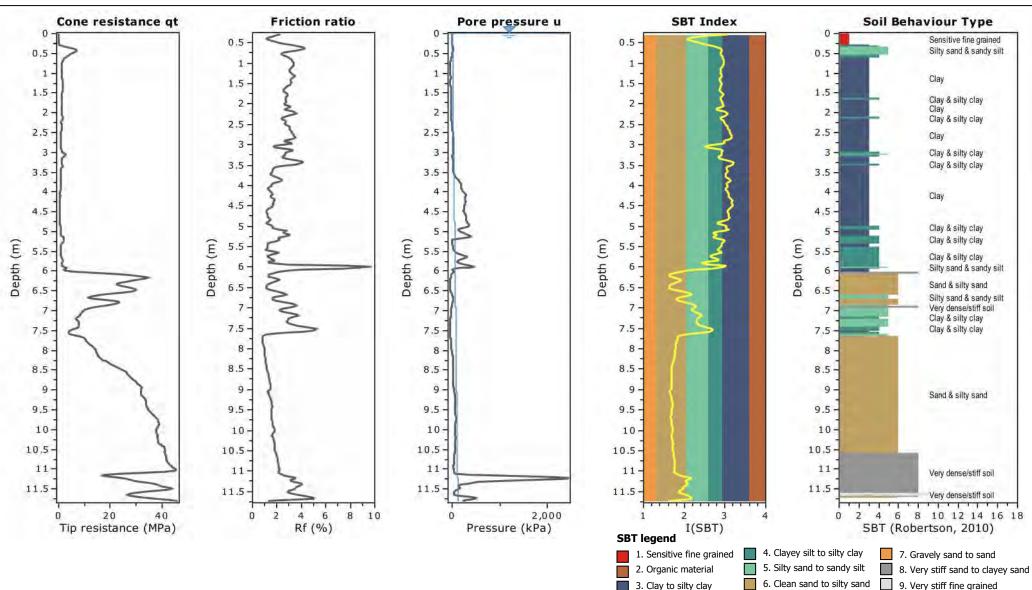



EOLOGISHIKI () Me Eotechnical Software

Project:

Location:

GeoLogismiki Geotechnical Engineers Merarhias 56 http://www.geologismiki.gr

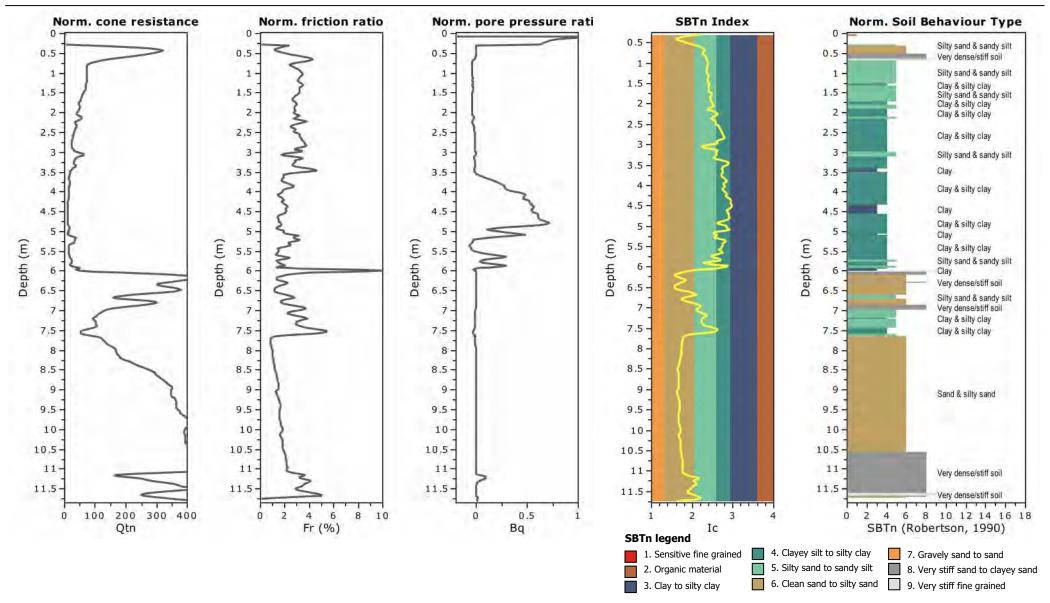


GEOLOGISHIKA Geotechnical Software

GeoLogismiki Geotechnical Engineers Merarhias 56 http://www.geologismiki.gr

Project:

Location:

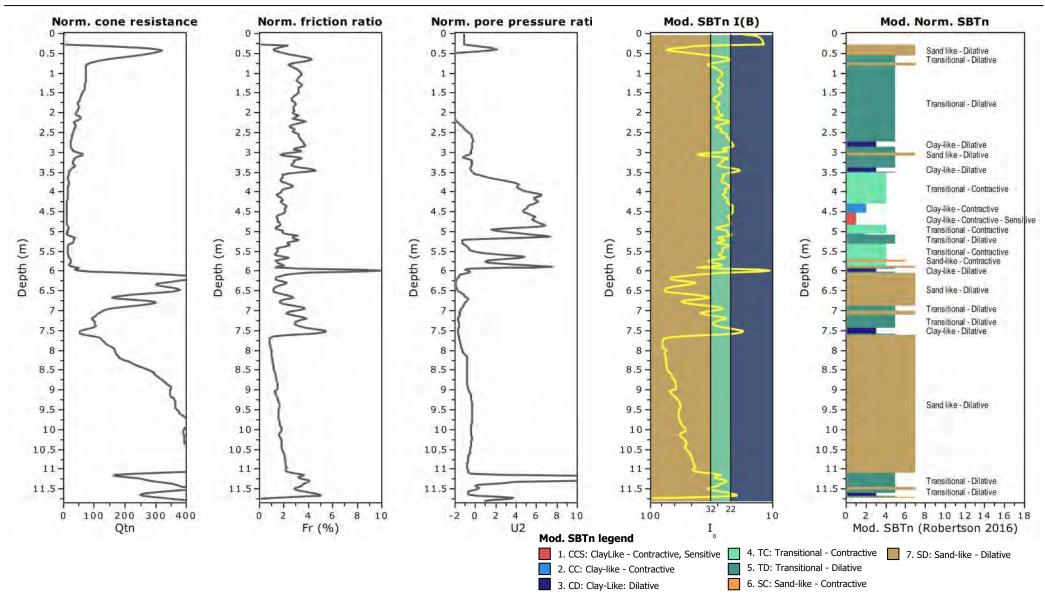

CPT: Sheet1

GEOLOGISHIKA Geotechnical software

GeoLogismiki Geotechnical Engineers Merarhias 56 http://www.geologismiki.gr

Project:

Location:


CPT: Sheet1

GEOLOGISHIKA Geotechnical Software

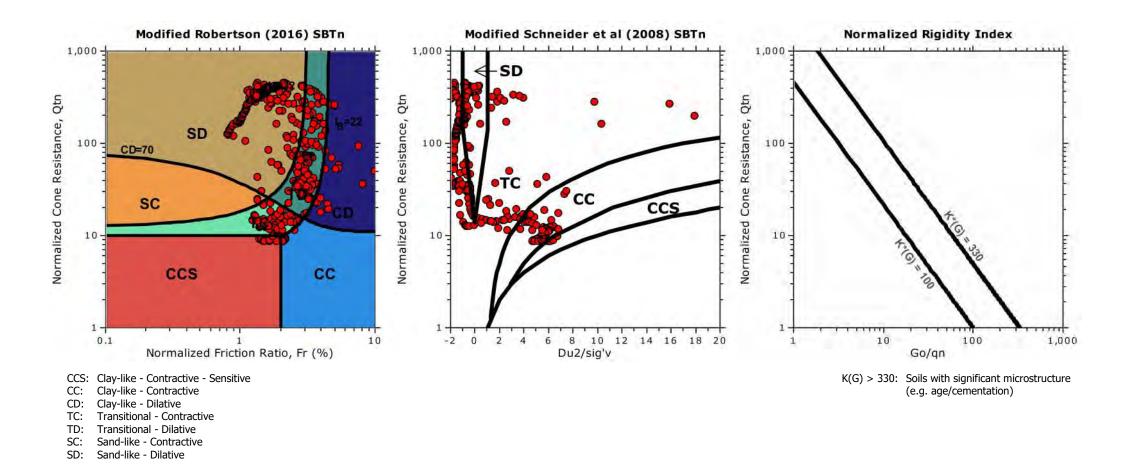
GeoLogismiki Geotechnical Engineers Merarhias 56 http://www.geologismiki.gr

Project:

Location:

CPT: Sheet1

CPT: Sheet1

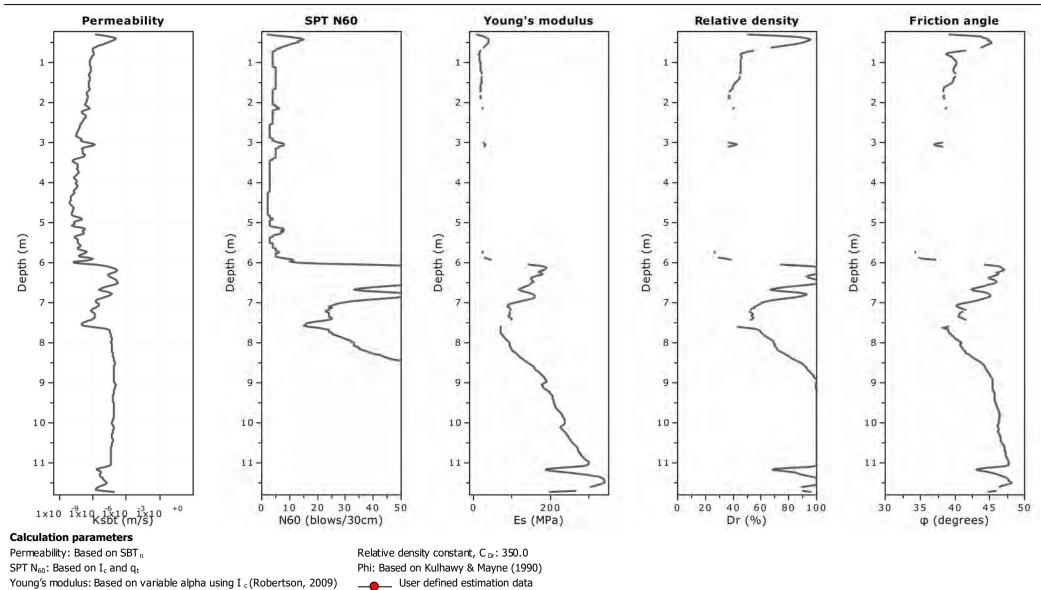

GEOLOGISMIKI Geotechnical Software Merarhias 56 http://www.geologismiki.gr

Project:

Location:

Total depth: 11.80 m, Date: 4/18/2022 Surface Elevation: 0.00 m Coords: X:0.00, Y:0.00 Cone Type: Cone Operator:

Updated SBTn plots



GEOLOGISHIVA Geotechnical Software

GeoLogismiki Geotechnical Engineers Merarhias 56 http://www.geologismiki.gr

Project:

Location:

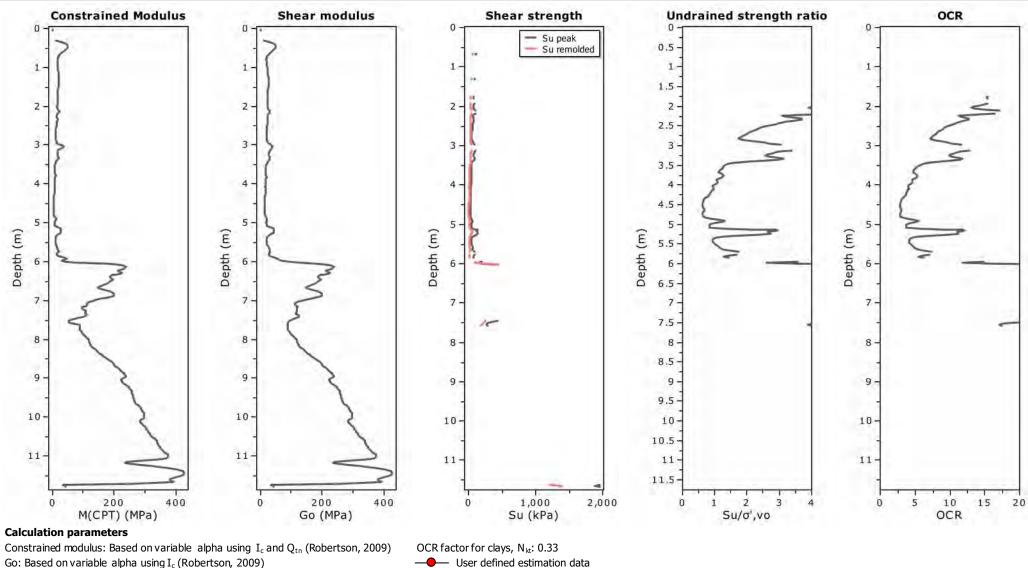
CPT: Sheet1

Cone Type:

Cone Operator:

Surface Elevation: 0.00 m

Coords: X:0.00, Y:0.00


Total depth: 11.80 m, Date: 4/18/2022

10

Project:

Location:

Flat Dilatometer Test data

-

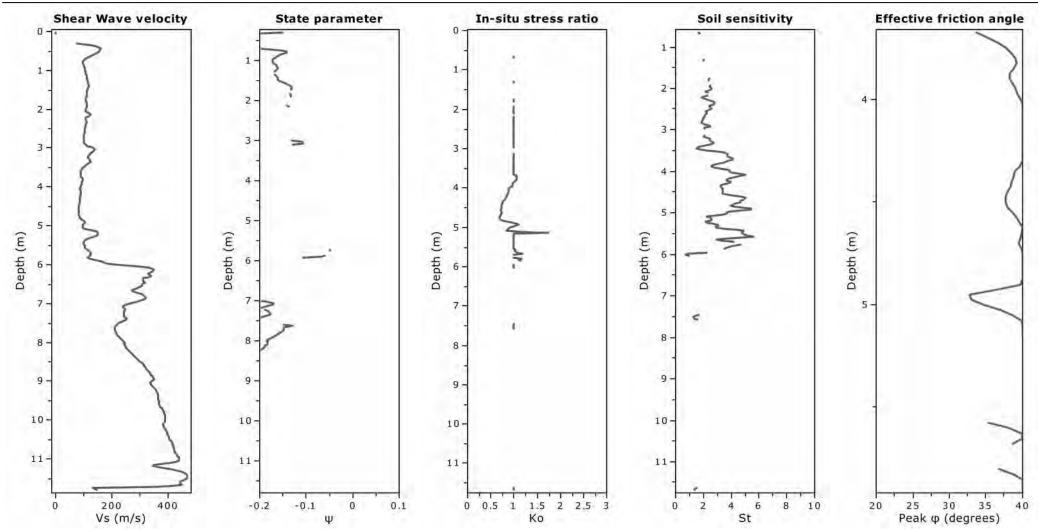
CPT: Sheet1

Cone Type:

Cone Operator:

Surface Elevation: 0.00 m

Coords: X:0.00, Y:0.00

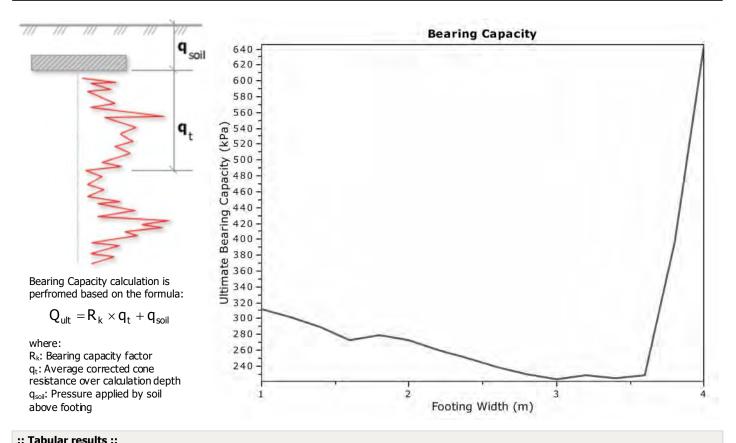

Total depth: 11.80 m, Date: 4/18/2022

11

Project:

Location:

Calculation parameters


Soil Sensitivity factor, N_s: 7.00

CPT: Sheet1

Project:

Location:

:: Tabula	r results ::						
No	В (m)	Start Depth (m)	End Depth (m)	Ave.q _t (MPa)	R _k	Soil Press. (kPa)	Ult. bearing cap. (kPa)
1	1.00	0.50	2.00	1.51	0.20	9.50	311.24
2	1.20	0.50	2.30	1.46	0.20	9.50	301.65
3	1.40	0.50	2.60	1.40	0.20	9.50	289.18
4	1.60	0.50	2.90	1.31	0.20	9.50	272.07
5	1.80	0.50	3.20	1.34	0.20	9.50	278.47
6	2.00	0.50	3.50	1.31	0.20	9.50	272.36
7	2.20	0.50	3.80	1.25	0.20	9.50	260.13
8	2.40	0.50	4.10	1.20	0.20	9.50	249.33
9	2.60	0.50	4.40	1.15	0.20	9.50	238.91
10	2.80	0.50	4.70	1.10	0.20	9.50	229.19
11	3.00	0.50	5.00	1.07	0.20	9.50	223.22
12	3.20	0.50	5.30	1.09	0.20	9.50	227.77
13	3.40	0.50	5.60	1.08	0.20	9.50	224.65
14	3.60	0.50	5.90	1.10	0.20	9.50	228.64
15	3.80	0.50	6.20	1.94	0.20	9.50	396.52
16	4.00	0.50	6.50	3.17	0.20	9.50	643.39

Presented below is a list of formulas used for the estimation of various soil properties. The formulas are presented in SI unit system and assume that all components are expressed in the same units.

:: Unit Weight, g (kN/m³) ::

$$g = g_{w} \cdot \left(0.27 \cdot \log(R_{f}) + 0.36 \cdot \log(\frac{q_{t}}{p_{a}}) + 1.236 \right)$$

where $g_w =$ water unit weight

:: Permeability, k (m/s) ::

 $I_{\,c}$ < 3.27 and $I_{\,c}$ > 1.00 then k = 10 $^{0.952\text{--}3.04\text{-}I_{c}}$

$$I_c \leq$$
 4.00 and $I_c >$ 3.27 then k = 10^{-4.52-1.37 \cdot I_c}

:: N_{SPT} (blows per 30 cm) ::

$$\begin{split} N_{60} = & \left(\frac{q_c}{P_a} \right) \cdot \frac{1}{10^{1.1268 - 0.2817 \cdot I_c}} \\ N_{1(60)} = & Q_{tn} \cdot \frac{1}{10^{1.1268 - 0.2817 \cdot I_c}} \end{split}$$

:: Young's Modulus, Es (MPa) ::

 $\begin{array}{l} (q_t - \sigma_v) \cdot 0.015 \cdot 10^{0.55 \cdot I_c + 1.68} \\ (\text{applicable only to } I_c < I_{c_cutoff}) \end{array}$

:: Relative Density, Dr (%) ::

 $100 \cdot \sqrt{\frac{Q_{tn}}{k_{DR}}}$

(applicable only to SBT _n: 5, 6, 7 and 8 or $I_c < I_{c_{cutoff}}$)

:: State Parameter, ψ ::

 $\psi = 0.56 - 0.33 \cdot log(Q_{tn,cs})$

:: Drained Friction Angle, φ (°) ::

(applicable only to SBT n: 5, 6, 7 and 8 or $I_c < I_{c_cutoff}$)

:: 1-D constrained modulus, M (MPa) ::

 $\begin{array}{l} \mbox{If } I_c > 2.20 \\ a = 14 \mbox{ for } Q_{tn} > 14 \\ a = Q_{tn} \mbox{ for } Q_{tn} \leq 14 \\ M_{CPT} = a^{} (q_t - \sigma_v) \end{array}$

If $I_c \ge 2.20$

:: Small strain shear Modulus, Go (MPa) ::

$$G_0 = (q_t - \sigma_v) \cdot 0.0188 \cdot 10^{0.55 \cdot I_c + 1.68}$$

:: Shear Wave Velocity, Vs (m/s) ::

$$V_{s} = \left(\frac{G_{0}}{\rho}\right)^{0.50}$$

:: Undrained peak shear strength, Su (kPa) ::

 $N_{kt} = 10.50 + 7 \cdot \log(F_r)$ or user defined = $(a_* - \sigma_v)$

$$S_u = \frac{(q_t - \sigma_v)}{N_{kt}}$$

(applicable only to SBT _: 1, 2, 3, 4 and 9 or I _c > I _c_utoff)

:: Remolded undrained shear strength, Su(rem) (kPa) ::

$$S_{u(rem)} = f_s$$
 (applicable only to SBT_n: 1, 2, 3, 4 and 9
or $I_c > I_c$ _{cutoff})

:: Overconsolidation Ratio, OCR ::

$$k_{OCR} = \left[\frac{Q_{tn}^{0.20}}{0.25 \cdot (10.50 \cdot +7 \cdot \log(F_r))}\right]^{1.25} \text{ or user defined}$$
$$OCR = k_{OCR} \cdot Q_{tn}$$

(applicable only to SBT _: 1, 2, 3, 4 and 9 or I _c > I _c_utoff)

:: In situ Stress Ratio, Ko ::

 $K_{o} = (1 - \sin \varphi') \cdot OCR^{\sin \varphi'}$

(applicable only to SBT_n: 1, 2, 3, 4 and 9 or $I_{\rm c} > I_{c_cutoff}$)

:: Soil Sensitivity, St ::

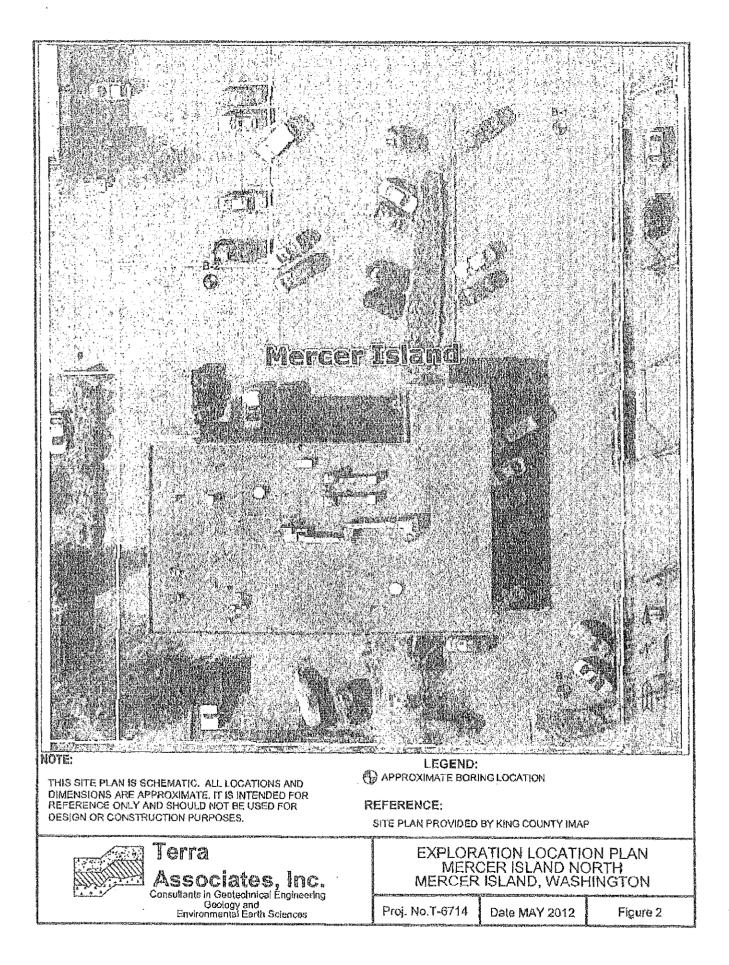
$$S_t = \frac{N_S}{F_r}$$

...

(applicable only to SBT _: 1, 2, 3, 4 and 9 or I _c > I _c_cutoff)

:: Peak Friction Angle, φ' (°) ::

 $\phi' = 29.5^{\circ} \cdot B_q^{0.121} \cdot (0.256 + 0.336 \cdot B_q + \log Q_t)$ (applicable for 0.10<B_q<1.00)


References

• Robertson, P.K., Cabal K.L., Guide to Cone Penetration Testing for Geotechnical Engineering, Gregg Drilling & Testing, Inc., 5 th Edition, November 2012

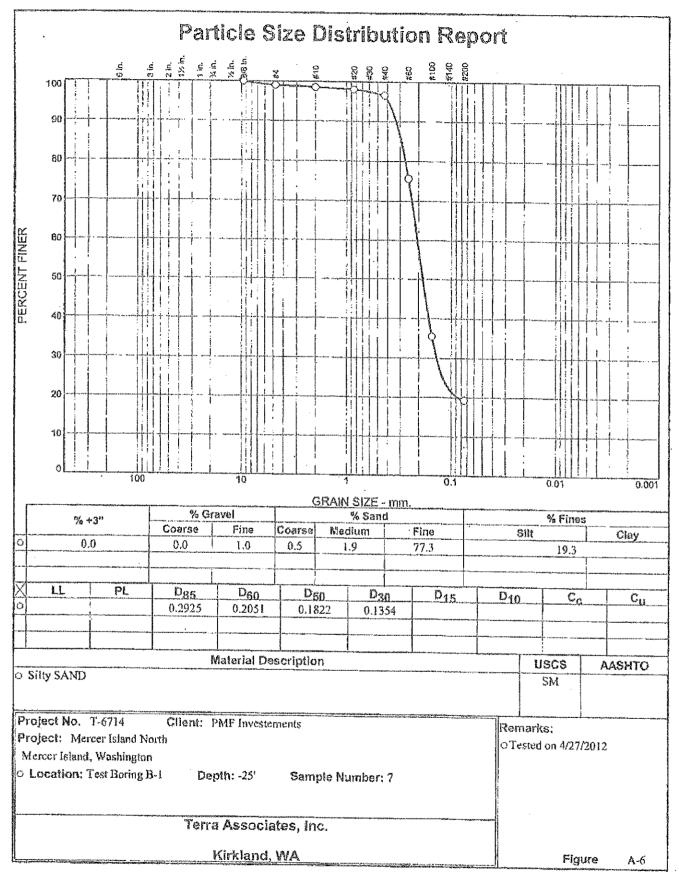
• Robertson, P.K., Interpretation of Cone Penetration Tests - a unified approach., Can. Geotech. J. 46(11): 1337–1355 (2009)

• N Barounis, J Philpot, Estimation of in-situ water content, void ratio, dry unit weight and porosity using CPT for saturated sands, Proc. 20th NZGS Geotechnical Symposium

APPENDIX B Historical Explorations

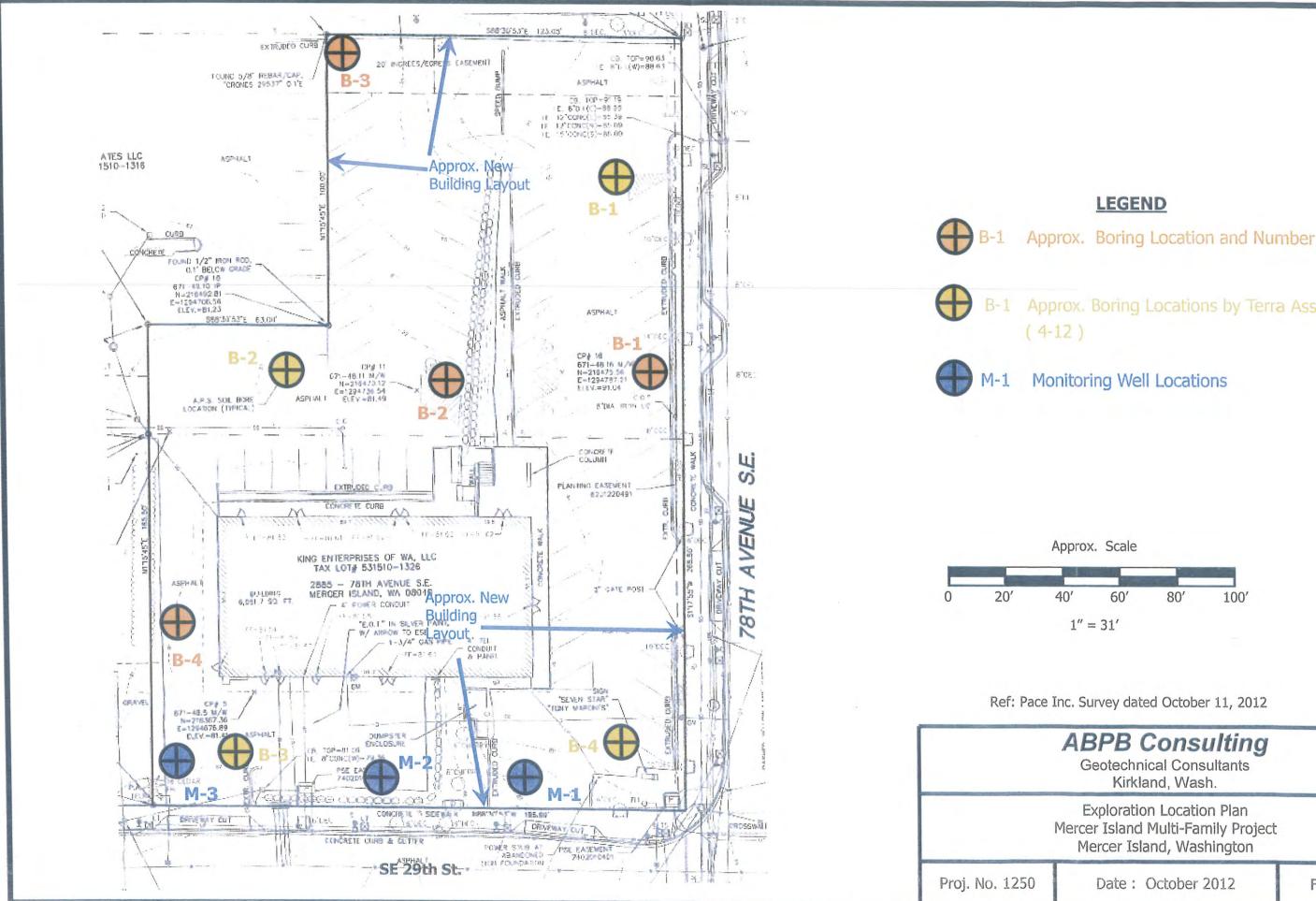
	MAJ	OR DIVISIONS		LETTER SYMBO	TYPICAL DESCRIPTION					
	1	GRAVELS	Clean Gravels	GW	Wall-graded gravels, gravel-sand mixtures, little or no fines.					
SOILS al larger	់ រុប :	More than	(less than 5% fines)	GP	Poorly-graded gravels, gravel-send mixtures, little or no fines.					
	1 Se 21	50% of coarse fraction is larger than No.	Gravels	GM	Silly gravels, gravel-sand-sill mixtures, non-plastic fines.					
GRAINED 50% mater	J Sieve	4 sieve	with fines	GÇ	Clayey gravels, gravel-sand-clay mixtures, plastic fines					
GRAI 50% 1	. 201	SANDS	Clean Sands	SW	Well-graded sands, gravelly sands, little or no fines.					
COARSE G More than 50 than No.		More than	(less than 5% fines)	SP	Poorly-graded sends or gravelly sands, little or no fines.					
Nore Nore	943	50% of coarse fraction is smaller than	Sands	SM	Silly sands, sand-ellt mixtures, non-plastic fines.					
~ ~		No. 4 sieve	with fines	SC	Clayey sands, sand-clay mixtures, plastic fines.					
0 Te	<u> </u>	SILTS AND CLAYS			inorganic silts, rock flour, clayey silts with slight plasticity.					
SOILS naterial	. 200	Liquid limit is le		CL	Inorganic clays of low to medium plasticity, (lean clay					
	n No size			OL	Organic sills and organic clays of low plasticity.					
GRAINED than 50%	si tha sieve	SILTS AND		MH	Inorganic silts, elastic.					
Ш de th th th th th th th th th th th th th	smaller than No. 200 sieve size	Liquid limit is gre		СН	Inorganic clays of high plasticity, fat clays.					
FINE	(J	Liquiu anar is gre			- Organic clays of high plasticity.					
	Н	IGHLY ORGAN	NC SOILS	PT	Peal.					
			DEFINITIO	N OF TI	RMS AND SYMBOLS					
ILESS	Den	sity Resista	dard Penetratio	n Foot	2" OUTSIDE DIAMETER SPLIT SPOON SAMPLER					
COHESIONLESS	Loos Med Den	ium dense	0-4 4-10 10-30 30-50 >50		 2.4" INSIDE DIAMETER RING SAMPLER OR SHELBY TUBE SAMPLER WATER LEVEL (DATE) Tr TORVANE READINGS, Isf 					
ų.	<u>Consi</u>		dard Penetration Ince in Blows/		Pp PENETROMETER READING, isf DD DRY DENSITY, pounds per cubic foot					
COHESIVE	Very s Soft Mediu Stiff Very s Hard	rn stiff	0-2 2-4 4-8 8-16 16-32 >32		LL LIQUID LIMIT, percent PI PLASTIC INDEX N STANDARD PENETRATION, blows per foot					
		Consultants in G	iates, In eolechnicel Engine	1	UNIFIED SOIL CLASSIFICATION SYSTEM MERCER ISLAND NORTH MERCER ISLAND, WASHINGTON					
		Ge	ology and Ital Earth Sciences	~	Proj. No. T-6714 Date MAY 2012 Figure A					

LO	GC	DF BORING NO. B-1	and an also a subscription of the subscription of	n a kazaran karan ka	initian and an and a second second	Flaure	No. A-2
Proje	ct: <u>)</u>	Vercer Island North	Project No	: <u>17-6714</u> [Date Driffe	ed: <u>4-25-1</u>	
Clien	1: <u>P</u>	MF Investments Driller; Br	ORETEC		.ogged B		
Loca	lion:	Mercer Island, Washington		Approx, Eley: <u>1</u>	1/A		
Depth (ft)	Sample Interval	Soil Description	Consistency/ Relative Density	Moisture Content % Wp 1		7T (N)	Observ. Well
omernage ,		(4 inches ASPHALT)		a an tha an		********	
		FILL: brown sand with silt and gravel, fine to course grained, moist.	Medium Dense		18 v		
5-		FILL: brown and gray silly sand with gravel, fine to medium grained, moist.	Loose	18.3 *	and the second second		
6-		Dark brown SILT with organics, fine grained, moist.	Loose				
7		Gray SILT, fine grained, moist, sand pockets, slight motiling.	Stiff	. 40.0 · *	14		
10- 11- 12- ¥ 13-		Brown S(LT, fine grained, moist to wet, sand pockets,	Medium Stiff	28,2 *	4		
14 15- 16-	Amount for some for some state of the source		Hard	22:5 × 14.5 ×	, , , , , , , , , , , , , , , , , , ,	4 <u>2</u> ¢	
17- 18- 19-		Gray silty SAND, fine to medium grained, moist to wet, (SM)	Very Dense				
20-		*See Next Page			, , ,		
E OUIDO	ses. Ti hould r	prohole log has been prepared for geotechnical his information pertains only to this boring location hat be interprited as being indicativo of other areas		Terra Associ Consultants in Gr and Environ	ates, totechnical Earth	Engineering, Ge	sology


LO	G	OF BORING NO. B-1	n Mar dina and i Directi and an			Figure I	lo. A-2
Projec	st:	Mercer Island North	Project No:	<u>T-6714</u>	Date Drill	ed: <u>4-25-12</u>	
		MF investments Driller: BC	DRETEC		ogged By:		
Locat		Mercer Island, Washington	an a	Approx. Elev:	<u>NVA</u>		
Depth (ft)	Sample Interval	Soil Description	Consistency/ Relative Density	Moisture Content Wp xIW 10 20 30 40	∧ 1 2 % Si	enetrometer TSF △ T (N) ows/ft ● 0 30 40	Observ. Well
21-				12.5 ×	******	50	4
22-					-		
- 23-			Very Dense				
24-		Gray silly SAND, fine to medium grained, moist to wet. (SM)					
				15.2 *		50	16
 26					ender statuter of the state		
- 27-							
- 28-		ng dan una ngu tau ana ana una kay ina kay ina ang ang ang ang ang ang ang ang ang a	· · · · · · · · · · · · · · · · · · ·		e calificação da las		
29-		Gray SILT, fine grained, moist. (ML)			الله الله الله الله الله الله الله الله		
- 30-			Hard	12.4 X		50	
- 31-		na transmorte en diserra da proposação do en calquera possíveira de Santa Balance de Santa da Santa de Santa d		-	CHILLING X IN LINC		
- 32-	And the second sec	Test boring terminated at 31 feet. Perced groundwater observed at 13 feet		** Skieder	clanicast bia Meitre Mittee		
33-		during drilling. Boring converted to 2-Inch monitoring		August 1998	alia tel herratterin		
34-		well.		in the second			
- 35-							
- 36-	No. of the second s			Training to Anno 1995	200 Automation		
37-				Sender Young and			The PETER And Intelligence
- 38-	and the second			Sent as standard and a sent and	tan daga kang kang kang kang kang kang kang k	۰.	
- 39	Share of the second second second			a realizador de las	n-identification		In some vice
40-					White services	:	
purposes	in" : on bli	ehole log has been prepared for geotechnical s Internation pertains only to this boring location t be interpated as being indicative of other areas		Consultants	ciates.	Engineering, G	зысалалалалала

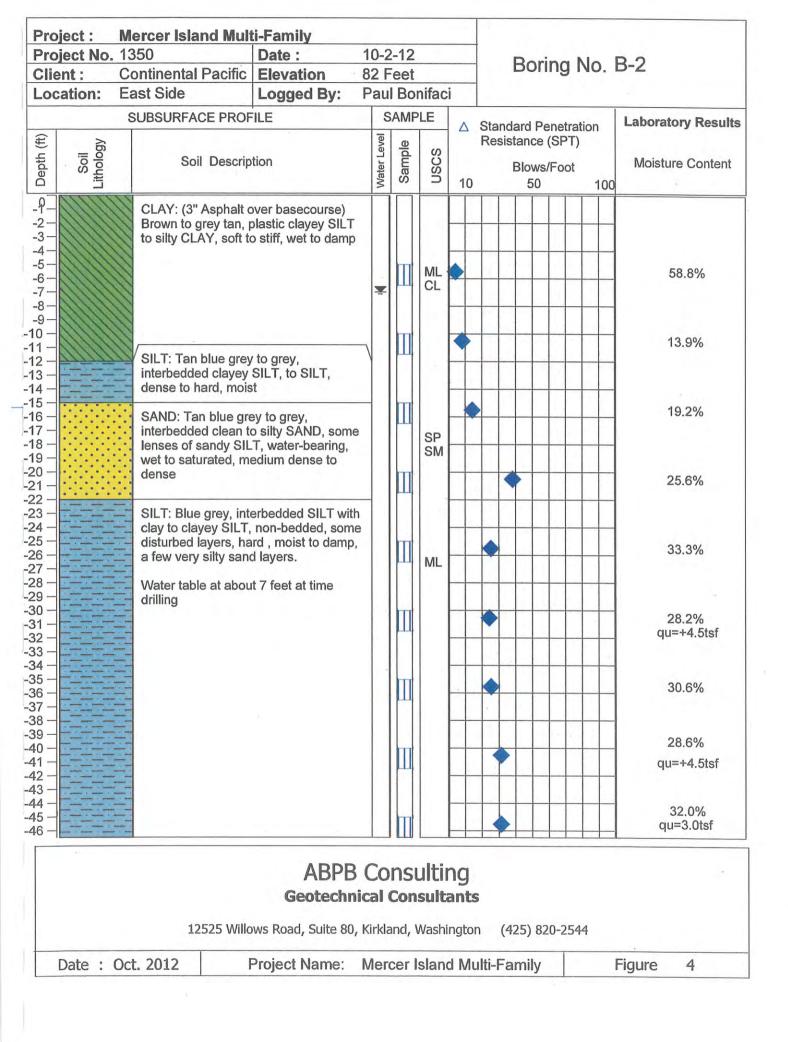
LO	G	OF BORING NO. B-2	ig one the factorial distribution and the second		Figure No. A-3
Froje	ct:	Mercer Island North	Project No: T-67	14 Date Dril	led: <u>4-25-12</u>
Client	(; _F	MF Investments Dritter: BORETI	EC	Logged	By: <u>CSD</u>
Locat	tion	Mercer Island, Washington	A	pprox. Elev: <u>N/A</u>	
Depth (ft)	Sample Interval	Sail Description	Consistency/ Relative Density	Moisture Cantent % Wp	Pocket Peneirometer △ TSF △ 1 2 3 4 SPT (N) ● Blows/ft ● 10 20 30 40
1- 2- 3-		(4 inches ASPHALT) FILL: brown gravel, fine to course grained, saturated.	a data data 1000 art. Era bata data atta data data 100	43.0 ×	13 0
4 5 6		Gray sandy SILT, fine graIned, moist to wet, motited. (ML) LL=33 PL=26	Soft	40.0 × 43.7	6
7		PI=7		43.7 × 58.3 ×	4 © 2
10 1 3 (7 1 1 1 2 7 1 1 1 2 7 1 1 1 2 7 1 1 1 2 7 1 1 1 1		Gray SILT, fine grained, moist to wet. (ML)	Hard	17.5 ·	41 9
18 19- 20- 21- 22-	and and the state of an above of an above of the state of		Loose	25.1 ·	
23- 24- 25- 26- 27-	in the second	Gray SAND, fine to medium grained, saturated. (SP)	Medium Dense	23,2 *	29
28- 29- 30- 31-	the state of the s		Dense	20.5 *	80//
32 33 34 36	مئسان المناجع المناسمات	Test boring terminated at 31.5 feet. Groundwater observed at 19.5 feet during drilling.	a durange, the topics a part of early defined as		
🛔 โก!อาเกอไ	lion p	rehole log has been prepared for geotechnical purposes. This entains only to this boring location and should not be interpeted callye of other areas of the site.		Terra Associa Consultante In Geote and Environme	tes, Inc. echnical Engineering, Geology erital Earth Sciences

.


LOG	OF BORING NO. B-3			Figure No. A-4
Project:	Mercer Island North	Project No:6	14 Døte Dril	led: <u>4-25-12</u>
Client: _[PMF Investments Driller: BORETE	<u>C</u>	Logged	By: <u>CSD</u>
Location	: Mercer Island, Washington	Å	pprox. Elev: <u>N/A</u>	
Depth (ft) Sample Interval	Sail Description	Consistency/ Relative Density	Moisture Content % Wp	Pocket Penetrometer A TSF A 1 2 3 4 SPT (N) Pelows/ft P 10 20 30 40
1- 2- 3-	(4 inches ASPHALT) FILL: gray slity sand with gravel, fine to medium grained, moist.	Medium Dense		
4	Gray SILT, fine grained, moist, occasional brown sand pocket, motified. (ML) LL=34 PL=27 PI=7 *At 15 feet soil becomes wet, no sand pockets Gray SAND, fine to medium grained, saturated, (SP)	Medium Stiff Dense	46.4 x 46.2 x 43.4 x 20.6 x 17.2 x 21.0 x 26.7 x	8 * 4 * 39 * * * *
32 - 33 - 34 - 36 - 37 - 38 - 39 - 40 -	Test boring terminated at 31.5 feet. Groundwater observed at 21 feet during drilling. Groundwater observed at 15.5 feet after drilling.			
Information p	advances of the site,		Terra Associa Consultants in Gente and Environme	tes, inc. chaical Englneering, Geology intal Earth Sciences

LOC	G (OF BORING NO. B-4		an a	• Figure No. A-5
Projeci	t:	Mercer Island North	Project No: T-67	714 Date Dril	led: <u>4-25-12</u>
Cllent:	P	MF Investments Driller: BORETE	Ċ	Logged	By: <u>CSD</u>
Locatio	on:	Mercer Island, Washington	A	pprox. Elev: <u>N/A</u>	
Depth (ft)	Sample Interval	Soil Description	Consistency/ Relative Density	Moisture Content % Wp	Pocket Penetrometer a TSF $a1$ 2 3 4 SPT (N) a Blows/fi $e10$ 20 30 40
1	-	(3.5 Inches ASPHALT) FILL; mix of brown sand with sill and gravel and gray silly sand with gravel, fine to coarse grained, moist.	Medium Dense	16.9 X	24 \$
9-1- 10-1-1- 11-1-1- 12-1-1 13-1-		Brown silty SAND, fine to medium grained, moist. (SM)	Vary Dense	15.2 x	56
14- 15 16 17 18 19 20 21 22 23 24 25 26 27 27		Gray SILT, fine grained, moist. (ML)	Hard	\$7.8 * 11.2 * 23.7 *	90/4 50/5 57
28- ¥ 29- 30- 31-		Gray SAND, fine to medium grained, saturated. (SP)	Medium Dense	21.9 X	19 *
32 33- 34- 36- 36- 37- 38- 38- 40-		Test boring terminated at 31.5 feet. Groundwater observed at 28 feet during drilling. Groundwater observed at 22 feet after drilling.			
information	n pe	shote log has been prepared for geotechnical purposes. This fains only to this boring location and should not be interpeted alive of other areas of the site.		Terra Associat Consultants in Geole and Environment	CES, Inc. chnical Engineering. Geology vol Earth Sciences

Tested By: <u>BS</u>


.

ABPB Consulting Geotechnical Consultants Kirkland, Wash.							
Exploration Location Plan Mercer Island Multi-Family Project Mercer Island, Washington							
Date: October 2012	Figure 2						

Pro	ject No. 1				-12			F	Boring	No	B-1
Clie		ontinental Pacific			eet			-	oning	40.	
Loc	ation: E	ast Side	Logged By: P	au	Bo	nifac	i				
		SUBSURFACE PROF	ILE	S	AMF	LE	Λ	Standa	rd Penetra	tion	Laboratory Results
Depth (ft)	Nooi Soil Descrip		ption		Water Level Sample			Resistance (SPT)			Moisture Content
		Fill: (3" Asphalt ove Brown to black tan, with some wood an to loose, moist (FI SILT: Tan mottled g interbedded clayey SILT, occasional pe very stiff grading to moist grades to wet 15 feet	mixed silty SAND d SILT, medium stiff LL) rrey to grey, SILT and sandy bbles top ten feet, hard to dense,	¥.		ML ML			-73 in		25.0% 15.6% 10.3% 25.0% 21.3%
9 – 30 – 31 – 32 – 33 – 34 – 35 –		SAND: Blue grey, of fine to medium SAN SAND, wet to satu dense to dense, wa	rated, medium			SP					28.2%
5 - 6 - 7 - 8 - 9 -		SILT: Blue grey, SI clayey SILT, hard , Groundwater level a time drilling	moist to damp			ML					25.0%

		B Consulting nical Consultants	
1252	25 Willows Road, Suite 8	0, Kirkland, Washington (425) 820-25	44
Date : Oct. 2012	D : 1N	Mercer Island Multi-Family	Figure 3

Pro	ject No. 13	350	Date: 1	0-2	2-12)i.	A AN A		
Clie	ent: Co	ontinental Pacific	Elevation 8	5 F	eet				E	Borir	ng r	NO .	B-3
Loc	ation: N	W corner	Logged By: Paul Bonifaci			1							
	5	SUBSURFACE PROF	FILE SAMPLE			Standard Penetration			.	Laboratory Results			
£	~ ~					T						ion	Laboratory Results
Depth (ft)	Soil Lithology	Soil Descrip	tion	Water Level	Sample	USCS	10		Resistance (SPT) Blows/Foot 50 100		100	Moisture Content	
-P		FILL: (3" Asphalt ov Brown to grey tan, s (FILL), loose, moist				SM							
-4 -5 -6 -7 -8		PEAT: Interbedded PEAT, mixed with s very soft, wet		¥	Ш	Pt							65.2%
-9 0 1 2 3 4		CLAY: Tan blue gre CLAY and clayey Sl organic fragments, w damp to wet	LT, scattered		Ш	CL ML							45.0% qu=0.75tsf
5 — 6 — 7 — 8 — 9 —					Ш								44.7% qu=0.25tsf
0 - 1 - 2 - 3 -		SILT: Blue grey, inte clay to clayey SILT, occasional sandy SI	non-bedded, LT layers, hard ,		Ш				-				26.5%
4 – 5 – 6 – 7 – 8 –		moist to damp, a few layers. Water table at about drilling			Ш	ML							21.9% qu=2.5tsf
9 - 0 - 1 - 2 - 3 - 3			3.54		Ш			•		·			37.9%
4 — 5 — 6 — 7 —					H				•				20.0% qu=+4.5tsf
8 — 9 — 0 — 1 —													29.0

	ABPB Consulting Geotechnical Consultants	
1252	25 Willows Road, Suite 80, Kirkland, Washington (425) 820-25	44
Date : Oct. 2012	Project Name: Mercer Island Multi-Family	Figure 5

Pro	ject No. 13	50	Date: 1	0-2	-12				r) i.			
		ontinental Pacific	Elevation 8	1 F	eet	4			Ľ	Soli	ng r	10. 1	B -4
Loc	ation: SN	<i>N</i> side	Logged By: F	au	Bo	nifac	i						
	S	UBSURFACE PROF)FILE		SAMPLE					1.5		. 1	Laboratory Resul
Depth (ft)	Nooi Descrip		ption tion		Water Level Sample		10	R	Standard Penetration Resistance (SPT) Blows/Foot 50 100			Moisture Content	
$\begin{array}{c}$		FILL: (3" Asphalt ov Brown to grey tan, s (FILL), loose, moist CLAY: Interbedded layers of silty CLAY scattered organic fra to soft, damp to we SILT: Tan blue grey sandy SILT with occ mostly clayey SILT, lenses, very stiff gr damp to moist Groundwater at abc drilling	grey to blue grey, and clayey SILT, agments, very soft t	×		SSSN ML CL ML							40.5% qu=1.25tsf 37.9% qu=0.2tsf 52.6% 26.9% qu=3.5tsf 15.6% 27.8% qu=+4.5tsf 35.7%
10 - 11 -									۲				28.2%

	ABPB Consulting Geotechnical Consultants	
1252	5 Willows Road, Suite 80, Kirkland, Washington (425) 820-2	544
Date : Oct. 2012	Project Name: Mercer Island Multi-Family	Figure 6

. .

Project N Client :	o. 1350 Continental Pacific			10-19-12 87 feet Terry Bukowsky			Boring No. M-1			
ocation: South Side		Logged By: T	Ter							
	SUBSURFACE PRO	FILE		SAN	IPLE		Standard Penetration	Laboratory Results		
Depth (ft) Soil	Soil Descri	otion	Water Level	Sample	USCS	10	Resistance (SPT) Blows/Foot 50 100	Moisture Content		
$ \begin{array}{c} $	Fill: (3" Asphalt ov Brown tan grading sandy SILT to SIL hard/very dense, r damp Monitoring Well ins	to grey, layers of , stiff grading to noist grading to			ML					

		44 1			
		Consulting ical Consultants			
1252	5 Willows Road, Suite 80,	, Kirkland, Washington (4	25) 820-2544		
Date : Oct. 2012	Project Name:	Mercer Island Multi-Fa	amily	Figure	7

	ent :	1350 Continental Pacific	Date : Elevation	10-20-12 on 83 feet		4	Boring No. M-2	
		South Side			Terry Bukowsky		skv	v
		SUBSURFACE PROF			SAM			
Depth (ft)	Soil Lithology	Soil Descrip	tion	Water Level	Sample	USCS	10	Resistance (SPT) Blows/Foot Moisture Conter
		SILT: (3" Asphalt ov Brown tan grading t sandy SILT to SILT grading to hard/ven grading to damp	o grey, layers of with clay, stiff dense, moist	-		ML		
1 - 2 - 3 - 4 - 5		occasional pebbles, dense Monitoring Well inst	wet/saturated,			SM		

		B Consulting nical Consultants	
1252	25 Willows Road, Suite 8	0, Kirkland, Washington (425) 820-25	44
Date : Oct. 2012	Project Name:	Mercer Island Multi-Family	Figure 8

	ent: C	350 ontinental Pacific	Date : Elevation		20-1	2		Boring No. M-3
	ocation: South Side				82 feet Terry Bukowsky		iskv	-
		SUBSURFACE PROF		-	SAMI			
Depth (ft)	Soil Lithology	Soil Descrip	140	Water Level	Sample	nscs	_ ∆ 10	Resistance (SPT) Blows/Foot Moisture Content
Q - - - - - - - - - - - - - - - - - - -		CLAY: (3" Asphalt of Brown tan grading t layers of clayey SIL very soft to soft, dar	o mottled grey, T and silty CLAY,	¥		ML CL		
18 — 19 — 20 — 21 — 22 — 23 — 24 — 25 — 26 —		SILT: Grey tan, clay some sandy SILT, c stiff to hard Monitoring Well inst	lamp to wet, very			ML		

	ABPB Consulting Geotechnical Consultants	
1252	25 Willows Road, Suite 80, Kirkland, Washington (425)	820-2544
Date : Oct. 2012	Project Name: Mercer Island Multi-Fami	ly Figure 9

APPENDIX C Slug Test Results

MEMORANDUM

DATE:	December 12, 2014
то:	Hines
FROM:	Angie Goodwin, LHG Roy Jensen, LHG
RE:	Summary of Mercer Island Multi-Family Development Slug Test Results Mercer Island, Washington 17984-01

This technical memorandum presents the results of slug testing that was conducted for the Mercer Island Multi-Family Development in Mercer Island, Washington. The development is located on the northwest corner of the intersection of SE 29th Street and 78th Avenue SE. We understand that current development plans include one to two stories of below grade parking and five levels of housing and mixed-use space plus rooftop mechanical equipment. Slug tests were performed to determine hydraulic conductivity of formation for use in estimating flow rates during dewatering.

Slug tests are performed by suddenly inserting or removing a solid PVC rod in a well and measuring the recovery of the water levels during the test. A test conducted by the insertion of the PVC rod into the well is referred to as a falling head test and the following removal of the rod is called a rising head test. The water level data generated from the tests were analyzed using the commercial software Aquifer^{Win32} Version 3 (Environmental Simulations, Inc., 2003). The slug test analysis is based on the Bouwer and Rice method (Bouwer and Rice 1976; Bouwer 1989) to obtain an estimated value of hydraulic conductivity of the aquifer.

Slug Testing Results

Slug testing was conducted in wells HC-1, HC-2, ABPB-M3, and Terra-B1 on November 17, 2014. A summary of monitoring well construction details is provided in Table 1. Shallow soils at the project site consist of Fill, silty Sand, and Silt units. The wells were screened in two stratigraphic units and are summarized below:

- HC-1 was screened in the Silt and silty Sand units;
- HC-2 was screened in the silty Sand unit;

Hines December 12, 2014

- ABPB-M3 boring log did not identify the screened interval, but it was assumed the well was screened in the Silt and silty Sand units; and
- Terra-B1 was screened in the Silt unit.

A summary of slug testing results is provided in Table 2. The slug test plots are provided as Figures 1 through 6. Multiple sets of falling and rising head tests were performed on each well. The results of the falling and rising head tests compare favorably. Average hydraulic conductivities determined from slug tests range from 9.0×10^{-5} to 8.3×10^{-4} cm/sec (0.3 to 2.4 feet/day). This hydraulic conductivity range is typical for silt and silty sand (Freeze and Cherry 1979).

References

Bouwer H. 1989. The Bouwer and Rice Slug Test – An Update. Ground Water 27(3): 304-309.

Bouwer H. and R.C. Rice 1976. A Slug Test for Determining Hydraulic Conductivity of Unconfined Aquifers with Completely or Partially Penetrating Wells. Water Resources Research 12(3): 423-428.

Environmental Simulations, Inc. 2003. Guide to Using Aquifer^{Win32} Version 3.

Freeze, R.A. and J.A. Cherry 1979. Groundwater. Prentice-Hall, Englewood Cliffs, New Jersey.

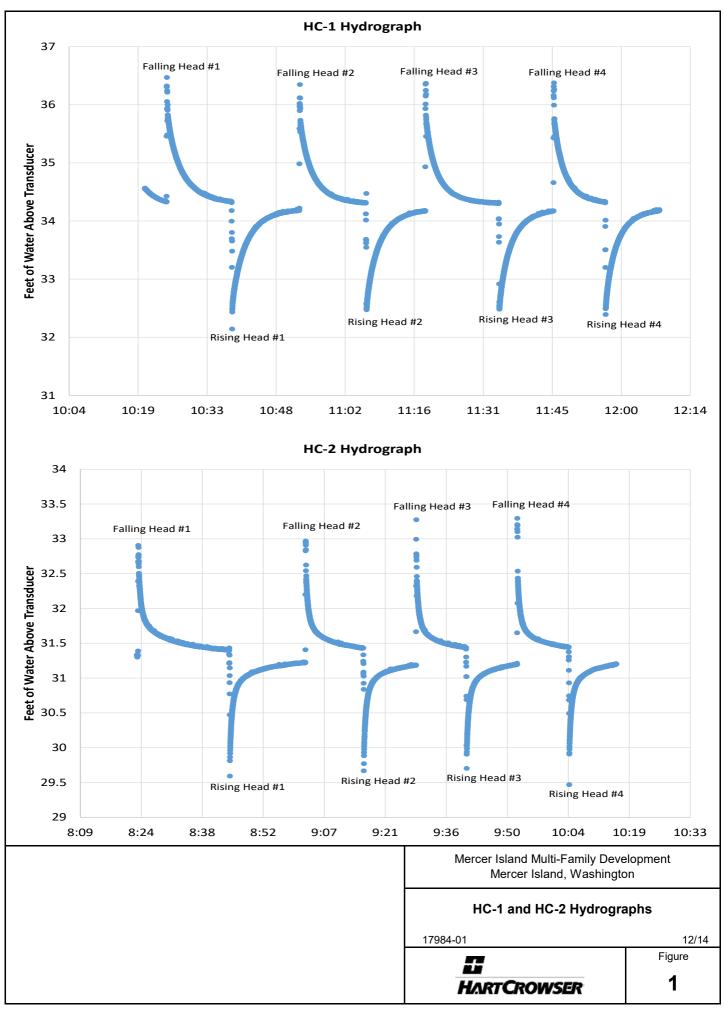
Attachments: Table 1 – Monitoring Well Construction Summary Table 2 – Summary of Slug Test Results Figure 1 – HC-1 and HC-2 Hydrographs Figure 2 – ABPB-M3 and Terra-B1 Hydrographs Figure 3 – HC-1 Representative Slug Tests Results Figure 4 – HC-2 Representative Slug Tests Results Figure 5 – ABPB-M3 Representative Slug Tests Results Figure 6 – Terra-B1 Representative Slug Tests Results

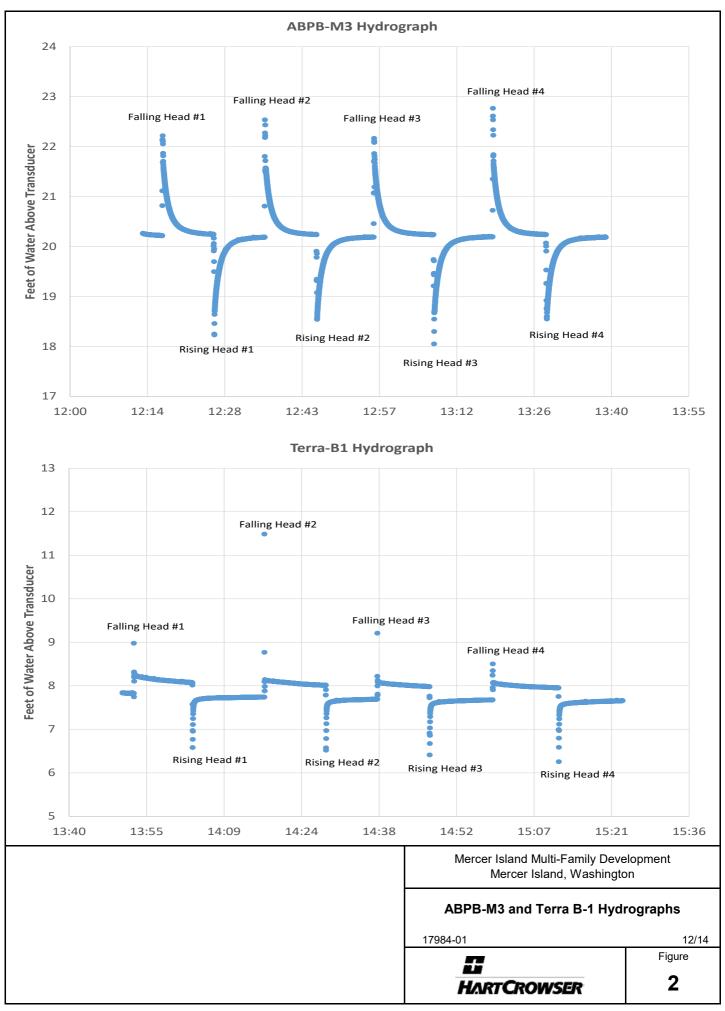
L:\Jobs\1798401\Report\Draft\Attachment 3\Slug Test Memo.docx

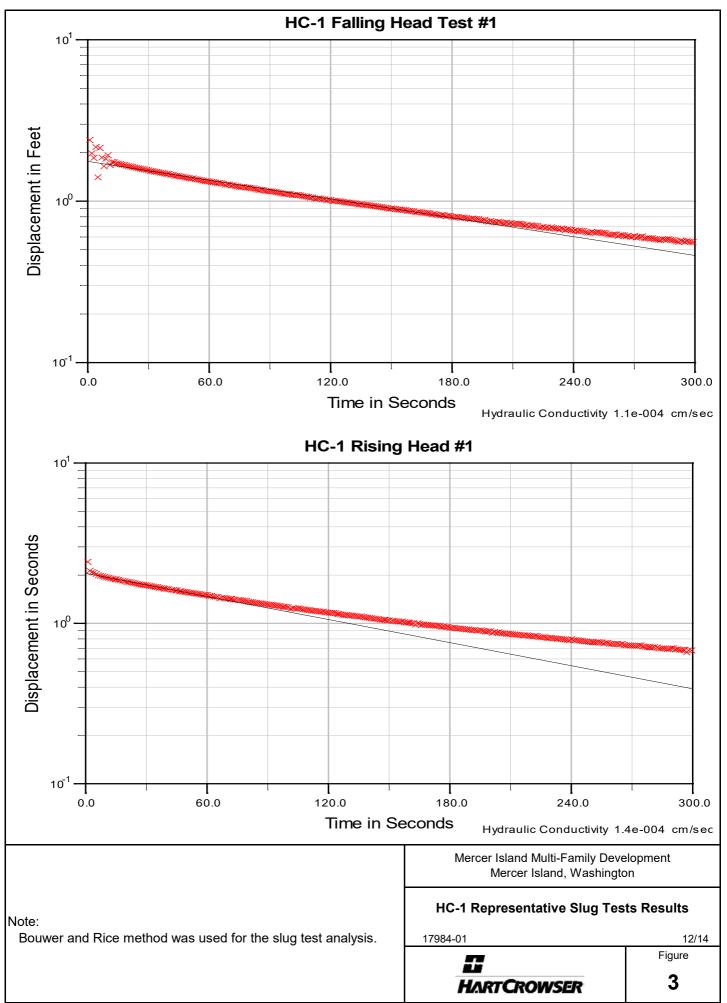
Table 1 - Monitoring Well Construction Summary

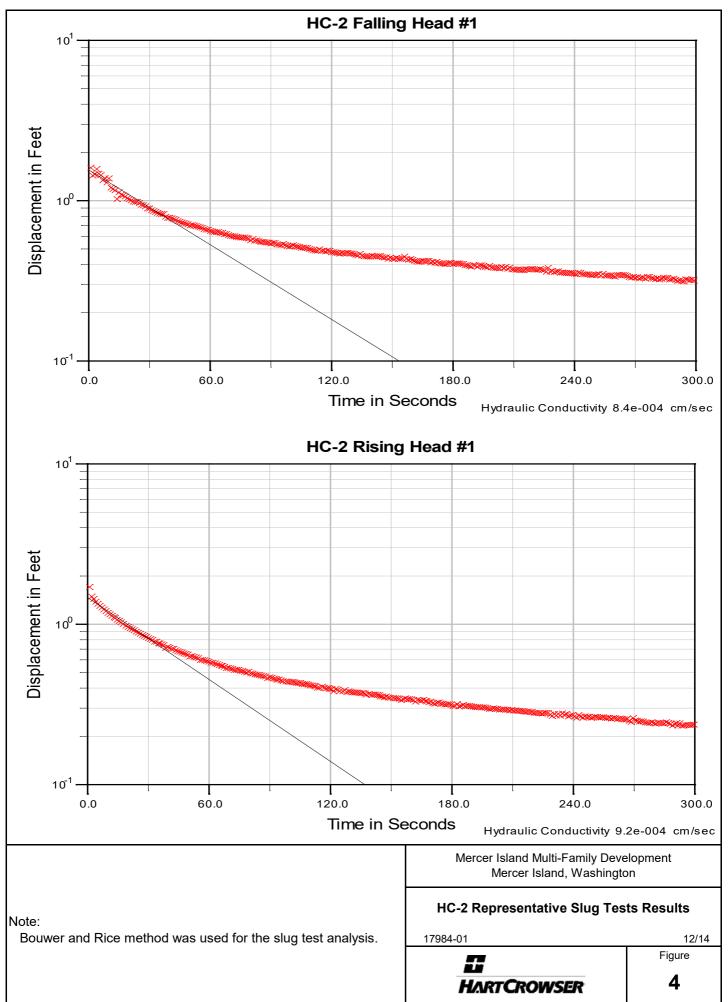
Well ID	HC-1	HC-2	ABPB-M3	Terra-B1
Boring Depth in Feet	41.5	41.5	26.5	31
Well Depth in Feet	40	39	25	17
Screen Interval Depth in Feet	20 to 40	29 to 39	NA	7 to 17
Depth to Sediment in Feet (1)	39.95	36.74	23.10	16.54
Depth to Water in Feet (1)	5.38	5.43	2.75	8.71
Saturated Thickness in Feet	35	31	20	8
Screened Interval Soil Description	ML - SM	SM	ML - SM	ML

Notes:


(1) Depth to sediment and depth to water was measured on November 17, 2014.


SM = Silty SAND


ML = Sandy SILT


NA = Data not available.


Well ID	Test Type	Test Number	Bo	ouwer and Rice		
wenind				K in ft/day		
	Falling Head	Test 1		0.3	1.1E-04	
	Rising Head	Test 1		0.4	1.4E-04	
	Falling Head	Test 2		0.3	1.2E-04	
	Rising Head	Test 2		0.4	1.5E-04	
HC-1	Falling Head	Test 3		0.4	1.5E-04	
	Rising Head	Test 3		0.4	1.5E-04	
	Falling Head	Test 4		0.4	1.4E-04	
	Rising Head	Test 4		0.4	1.5E-04	
			Average	0.4	1.4E-04	
	Falling Head	Test 1		2.4	8.4E-04	
	Rising Head	Test 1		2.6	9.2E-04	
	Falling Head	Test 2		2.1	7.5E-04	
	Rising Head	Test 2		2.2	7.7E-04	
HC-2	Falling Head	Test 3		2.6	9.3E-04	
	Rising Head	Test 3		2.4	8.6E-04	
	Falling Head	Test 4		1.9	6.6E-04	
	Rising Head	Test 4		2.7	9.4E-04	
			Average	2.4	8.3E-04	
	Falling Head	Test 1		1.8	6.3E-04	
	Rising Head	Test 1		1.8	6.2E-04	
	Falling Head	Test 2		1.8	6.5E-04	
	Rising Head	Test 2		1.9	6.6E-04	
ABPB-M3	Falling Head	Test 3		1.6	5.7E-04	
	Rising Head	Test 3		1.9	6.8E-04	
	Falling Head	Test 4		1.9	6.7E-04	
	Rising Head	Test 4		2.1	7.3E-04	
			Average	1.8	6.5E-04	
	Falling Head	Test 1		0.2	5.7E-05	
	Rising Head	Test 1		0.5	1.8E-04	
	Falling Head	Test 2		0.1	3.1E-05	
	Rising Head	Test 2		0.3	1.2E-04	
Terra-B1	Falling Head	Test 3		0.2	5.3E-05	
	Rising Head	Test 3		0.3	1.1E-04	
	Falling Head	Test 4		0.2	6.5E-05	
	Rising Head	Test 4		0.3	1.0E-04	
			Average	0.3	9.0E-05	

